

Presentation outline

- MDE enabling benefits
- Network element architecture
- Testing of Network application
 - Integration, performance, load and etc. testing
- Benefits observed with TTCN-3
- Enhancements sought for TTCN-3
- 3GPP: TTCN-2 to TTCN-3 migration
- Conclusions

MDE Enablers and UML-2.0

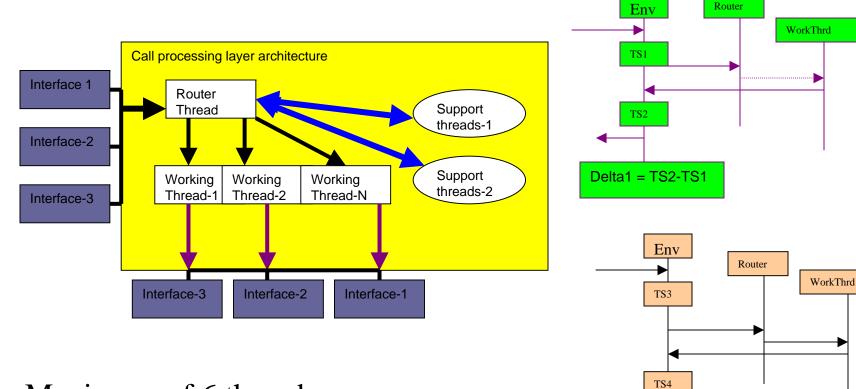
- Model Driven processes, requirements, development and testing
 - Consistent and formal representation -Removes ambiguity
 - Graphical representation clarity and understandability
 - Enables automation, maintenance, eases development
- UML-2.0
 - Motorola has used SDL (SDL influence can be seen in UML-2.0)
 - Has Model based support for
 - Business and Development processes
 - Requirements, Architecture and design
 - Verification and validation
 - Code generation

Integrated formal methods can give more benefits than conventional development

MDE vs Manual Development

Attribute	Manual	With UML-II	
Cycle Time	1	1.4X (less time)	
In-process faults	1	2-3X (less faults)	
Productivity	1	1.3 to 2X (increases)	
Cost of Quality	1	2.2X (decreases)	
Further automation capabilities	1	3X (increases)	
Performance	1	Largely met	
Memory consumption	1	20 to 50% overhead	
Control over the process	Only during coding	Right from requirements	
Reuse	Mostly code level	Right from requirements	
Stability of the process	1	1.4X (increases)	
Training	0	4 days	
Practice	0	3 days	

Networks conf 2005, India

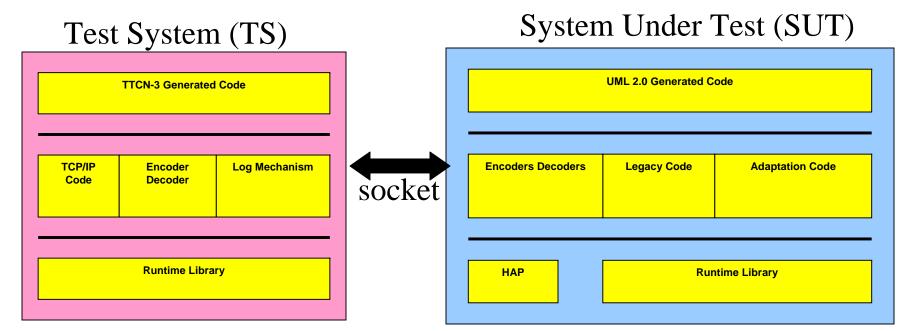


Mobility Management Application :Requirements

- Critical network element
- Performance is important
- First time code generation from the UML-2.0 model
- Has to support configurable threads
- Benefits of MDE to be verified
- Prototype the approach to again confidence for the actual application development

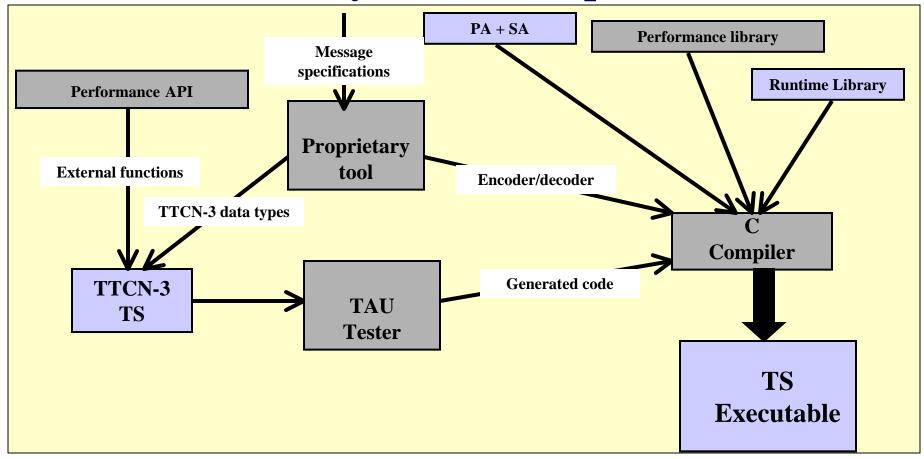
MMII Prototype architecture

- •Maximum of 6 threads
- •Generated code efficiency indexes
 Delta1 and Delta2 defined

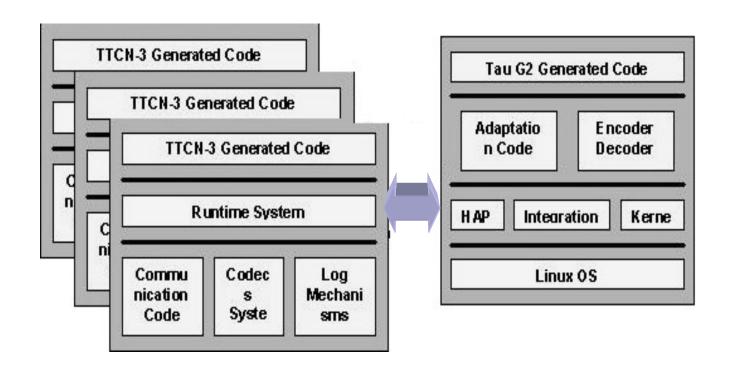

Delta2 = TS4-TS3

Testing challenges

- Testing the prototype wrt its requirements (Delta1 and Delta2)
- Suitability to different types of testing
 - Performance
 - Reliability
 - Load
 - Portability (It needs to support Solaris and later migration to Linux)
- The impact of TTCN-3 on various business parameters such as productivity, quality, reuse and cycle time
- Further automation possibilities and integration with UML-2.0
- Tool maturity and support for testing



Basic test system architecture



Same architecture is used for integration, reliability and performance testing
Simple TTCN-3 is used

Test system development

Load test system architecture

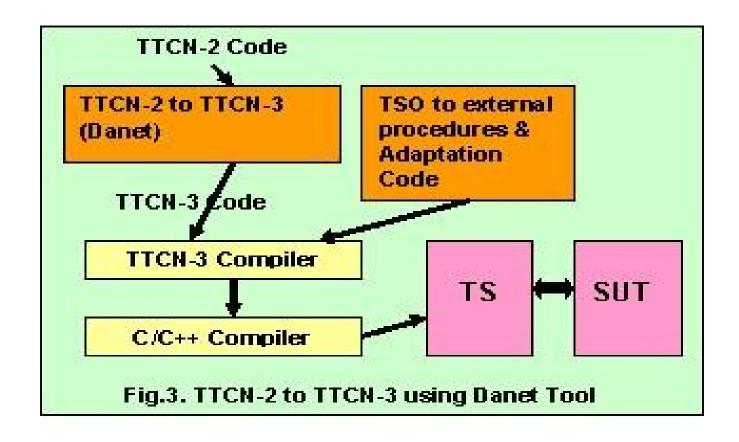
Multiple TSs are used to generate more load

Load test case with performance probing

```
/* Testcase to create PTCs for simulating several devices */
  testcase load_perf_TC() runs on MTC_system ATSI_
    map( self:OutPort, system:OutPort);
    loadGenTimer.start(loadRate); // generate as per the calibrated load
  alt {
      [] loadGenTimer.timeout {
       LoadGenArr [i] := PTC_.create;
       connect(self:mtc ptcPort, LoadGenArr[i-1]:mtc ptcPort);
       LoadGenArr [i].start(SimulateDevice(IDTYPE, DEVICE)); // simulate a device and get time taken
        I := i + 1;
        repeat;
      [MAX_COMPONETS > i] mtc_ptcPort.receive(sessTimeDiff_t:?) -> value sessTimeDiff_var {
         timediff[sessTimeDiff var.sessionId] := sessTimeDiff var;
         i := i+1;
         repeat; // to be simulated upto max components
    [MAX COMPONETS <i] mtc ptcPort.receive(sessTimeDiff t:?) -> value sessTimeDiff var{
         for(i:=0;i< j-1;i:=i+1){
         printTimeInfo(timediff[i].sessionId, timediff[i].timeDiff, timediff[i].cpuDiff); // logging of time info
         setverdict(pass);
         stop;
```

Benefits with TTCN-3

Business parameter	Conventional Testing	TTCN-3
Productivity	1X	2X (better)
Impact on Quality	1X	2X
Impact on CTR	1X	1.5X
Reuse	1X	2X
SUT coverage (same effort)	1X	2X


- •Scaling of TTCN-3 to many integration test cases
- •Reuse of the test system, communication and architecture across various types of testing
- •Abstraction of communications ports will be handy

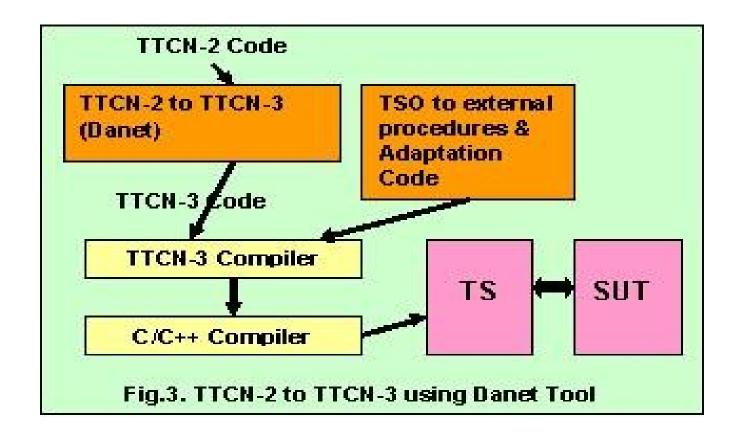
3GPP: TTCN-2 to TTCN-3 migration

3GPP: Migration to TTCN-3

Migration issues

- Some issues were encountered
- Organization is not positive as there is no seamless transformation
 - Can ETSI support this?
- Conversation of the adaptation is huge
 - Many tools were developed for proprietary encoding/decoding
- Waiting for the 3GPP decision
- Tools were identified

Enhancements sought for TTCN-3


- Ability to control the timers of SUT from TS
- Un-necessary need to encode/decode inter PTC messages (co-ordination messages)
- Integer data type can be extended to have support for 1 byte, 2 bytes, 4 bytes and 8 bytes
- Shall have set of data types for which default encoding and decoding is defined

3GPP: TTCN-2 to TTCN-3 migration

3GPP: Migration to TTCN-3

Migration issues

- Some issues were encountered
- Organization is not positive as there is no seamless transformation
 - Can ETSI support this?
- Conversation of the adaptation is huge
 - Many tools were developed for proprietary encoding/decoding
- Waiting for the 3GPP decision
- Tools were identified

Conclusions

- The reuse was very good between performance, reliability, load and integration testing
- The environment has been reused for the actual product testing (integration and performance)
- In the beginning the encoder/decoders were written manually and later a tool was developed
- Internal training material has been prepared and thrust is being given for TTCN-3 usage in various domains
- Waiting for ETSI decision to migrate to TTCN-3 test cases (3GPP)

EMAIL

Bhaskar Rao G. - bhaskarraog@motorola.com Keerthi Timmaraju - keerthi.timmaraju@motorola.com

