
1

TTCN-3 User Conference

Directions in Model Based 
Testing

R. M. Hierons
Brunel University, UK

rob.hierons@brunel.ac.uk
http://people.brunel.ac.uk/~csstrmh

TTCN-3 User Conference

What is Model Based Testing?

• At its simplest:
– We build a model
– We use this model to help in testing

• A model represents what is to be tested.
• It need not model the entire system and can 

leave out many details (abstraction).
• Models are often much simpler than 

requirements.



2

TTCN-3 User Conference

What sorts of languages?

• Almost anything. Languages used include:
– Diagrammatic notations (e.g. statecharts, SDL, 

sequence diagrams)
– Formal specification languages (Z, B, CASL, 

LOTOS)
– High level code (e.g. python)
– Finite state machines

TTCN-3 User Conference

Why bother?

• Benefits include:
– Automating test generation
– Automating checking of results
– Validating requirements/design through building model
– Regression testing – change the model not the tests

• But
– There is an initial cost of building the model
– Building a model requires particular skills/training
– The model may be wrong



3

TTCN-3 User Conference

Topics

• I will say a little about:
– Coverage and automated generation from state 

machines
– Testability and transformations for state 

machines
– Regression testing and ordering 

adaptive/TTCN-3 test cases
• Context: black-box testing

TTCN-3 User Conference

Coverage and Test automation



4

TTCN-3 User Conference

Finite State Machines

s1

s2 s3

s4

s5

a/0

a/0

a/0 a/1

a/1

b/0

b/0

b/1

b/1

b/1

• The behaviour of M in state si is defined by the set 
of input/output sequences from si

TTCN-3 User Conference

Test coverage

• There are many popular notions of code 
coverage such as: Statement, Branch, 
MC/DC, LCSAJ, …

• It is natural to define measures of model 
coverage.

• For FSMs we have:
– State coverage
– Transition coverage



5

TTCN-3 User Conference

Example (state)

s1

s2 s3

s4

s5

a/0

a/0

a/0 a/1

a/1

b/0

b/0

b/1

b/1

b/1

• We could use input 
sequence aaba

• Gives us no 
confidence in the 
transitions not 
covered

TTCN-3 User Conference

Example (transition)

s1

s2 s3

s4

s5

a/0

a/0

a/0 a/1

a/1

b/0

b/0

b/1

b/1

b/1

• Here we can use 
babaabbbaaba

• We may not observe an 
incorrect final state of a 
transition.

• Example: last transition in 
above.

• Instead, we can check the 
final states of transitions.



6

TTCN-3 User Conference

Distinguishing Sequences

• A distinguishing sequence 
is an input sequence that 
leads to a different output 
sequence for every state.

• Here e.g. aba s1

s2 s3

s4

s5

a/0

a/0

a/0 a/1

a/1

b/0

b/0

b/1

b/1

b/1

TTCN-3 User Conference

Unique Input/Output Sequences

• A UIO for state s is defined 
by an input sequence x 
such that the output from s 
in response to x is different 
from the output from any 
other state s’.

• UIO for s2: a/0 a/1
s1

s2 s3

s4

s5

a/0

a/0

a/0 a/1

a/1

b/0

b/0

b/1

b/1

b/1



7

TTCN-3 User Conference

Characterizing sets

• A set W of input sequences such that: 
– for every pair s, s’ of distinct states there is an 

input sequence in W that leads to different 
output sequences from s and s’.

• Note: 
– we can easily extend this to non-deterministic 

models.

TTCN-3 User Conference

Relative merits

• If we have a distinguishing sequence then 
we can use this for every state

• Every (minimal) FSM has a characterization 
set but we may need to run multiple tests to 
check a transition

• Practitioners report that many real FSMs
have (short) UIOs.



8

TTCN-3 User Conference

Test generation based on coverage

• In order to test a transition t it is sufficient to:
– Use a preamble to reach the start state of t
– Apply the input of t
– Check the final state of t (if required)
– Return to the initial state using a postamble/reset

• We can do this for every transition and automate 
the process.

TTCN-3 User Conference

Example

• To test transition (s2,s3,a/0) 
we could:
– Apply a to reach s2

– Apply input a from the 
transition

– Apply the distinguishing 
sequence aba

– Then reset

s1

s2 s3

s4

s5

a/0

a/0

a/0 a/1

a/1

b/0

b/0

b/1

b/1

b/1



9

TTCN-3 User Conference

Efficient test generation

• We could follow a transition test by another 
transition test.

• We might produce one sequence to test all 
of the transitions, benefits including:
– Fewer test inputs
– Longer test sequence so more likely to find 

faults due to extra states.

TTCN-3 User Conference

A simple approach

• The following produces a single sequence:
– Start with the preamble and test for a transition 

t1.
– Now choose another transition t2 and move to 

its start state and then add a test for t2.
– Repeat until we have included tests for every 

transition.
• How do we choose a best order in which to 

do this?



10

TTCN-3 User Conference

Representing a transition test

• For transition (s5,s3,b/0) 
using distinguishing 
sequence aba we can add 
an extra edge:
– From s5

– Input baba
– To s1

s1

s2 s3

s4

s5

a/0

a/0

a/0 a/1

a/1

b/0

b/0

b/1

b/1

b/1

TTCN-3 User Conference

Solving the optimisation problem
• Our problem can be seen as:

– find a shortest sequence that contains every ‘extra’
edge.

• This is an instance of the (NP-hard) Rural 
Postman Problem.

• There is an algorithm that is optimal if:
– There is a reset to be tested; or
– Every state has a self-loop

• This approach has been implemented in tools.



11

TTCN-3 User Conference

Overlap

• The Rural Postman approach produces 
separate tests for the transitions and 
connects these.

• However, the transition tests might overlap.
• There are algorithms that utilize this.

TTCN-3 User Conference

Resets

• We may have to include resets in a test sequence.
• It has been found that resets:

– Can be difficult to implement, possibly requiring 
human involvement and reconfiguration of a system.

– Can make it less likely that faults due to additional 
states will be found.

• However, we can find a test sequence that has 
fewest resets – and can do so in polynomial time.



12

TTCN-3 User Conference

A problem with coverage
• No guarantees:

– Even if we have checked the final state of every 
transition we may fail to detect faulty implementations.

• This is because:
– The methods to check states work in the model but 

might not work in the implementation.
• The (limited) empirical evidence suggests that:

– These approaches are more effective than transition 
coverage

– They often do not provide full fault coverage even if 
there are no additional states.

TTCN-3 User Conference

Fault Models

• A fault model is a set F of models such that:
– The tester believes that the implementation behaves like 

some (unknown) element of F.

• Fault models allow us to reason about test 
effectiveness:
– If the system under test passes a test suite T then it must 

be equivalent to one of the members of F that passes T.

• Similar to Test Hypotheses and mutation testing.



13

TTCN-3 User Conference

Test generation using fault models

• The aim is:
– Produce a test suite T such that no faulty 

member of F passes T.
• If our assumption is correct then:

– If the implementation passes T then it must be 
correct

• So, testing can show the absence of bugs 
(relative to a fault model).

TTCN-3 User Conference

Fault models for FSMs

• The standard fault model is:
– The set Fm of FSMs with the same input and 

output alphabets as the specification/model M 
and no more than m states, some predefined m.

• A test suite is a checking experiment if it 
determines correctness relative to Fm.

• A checking experiment is a checking 
sequence if it contains only one sequence.



14

TTCN-3 User Conference

Generating a checking experiment

• There are algorithms for producing a checking experiment 
using a characterization set:
– Given fault model Fm and FSM M with n states, these are 

exponential in n-m.
• There are polynomial time algorithms for producing a 

checking sequence if:
– our FSM M has a known distinguishing sequence and m=n.

• However:
– No known efficient algorithm for producing a shortest checking 

sequence 
– There is a polynomial algorithm for minimizing the number of 

resets.

TTCN-3 User Conference

Papers
• These include:

• A. V. Aho, A.T. Dahbura, D. Lee, and M. U. Uyar, 1991, An 
Optimization Technique for Protocol Conformance Test Generation 
Based on UIO Sequences and Rural Chinese Postman Tours, IEEE 
Trans. on Communications, 39, 11, pp. 1604-1615.

• T. S. Chow, 1978, Testing Software Design Modeled by Finite-State 
Machines. IEEE Trans. Software Engm 4 3, pp. 178-187.

• R. M. Hierons and H. Ural, 2006, Optimizing the Length of Checking 
Sequences, IEEE Trans. on Computers, 55 5, pp. 618-629.

• R. M. Hierons, 2004, Using a minimal number of resets when testing 
from a finite state machine, Information Processing Letters, 90 6, pp. 
287-292.

• M. Kapus-Kolar, 2007, Test as Collection of Evidence: An Integrated 
Approach to Test Generation for Finite State Machines, The 
Computer Journal, 50 3, pp. 315-331.



15

TTCN-3 User Conference

Future work

• Many potential areas:
– Domain specific fault models.
– Verifying fault models.
– Concurrent communicating FSMs.
– Adding time, …

TTCN-3 User Conference

Testability Transformations for 
Extended Finite State Machines



16

TTCN-3 User Conference

Extended finite state machines

• FSMs with:
– Memory (variables)
– Inputs with parameters
– Outputs with parameters
– Guards on transitions

• Languages such as SDL and Statecharts
have more features.

TTCN-3 User Conference

Testing from EFSMs

• One approach is:
– Choose a test criterion
– Find a set of paths through EFSM that satisfy the 

criterion
– Generate an input sequence for each path.

• Note:
– FSM techniques produce sequences that test control 

structure, we can add sequences for dataflow.
• There is a problem: we might choose infeasible 

paths.



17

TTCN-3 User Conference

Testability transformations

• We could rewrite the EFSM so that:
– all paths are feasible; or 
– there is a known set of feasible sufficient paths.

• Note: in general, this problem is 
uncomputable.

TTCN-3 User Conference

Special case

• The problem can be solved when:
– All assignments and guards are linear

• Approach has been applied to real protocols 
(Uyar and co-authors).



18

TTCN-3 User Conference

General case

• We can split states on the basis of:
– Transition guards (preconditions)
– Transition postconditions

• However:
– Analysis requires us to reason about predicates
– May lead to exponential increase in number of states.

• Framework has been described but little more.

TTCN-3 User Conference

Estimating feasibility

• A transition can make a sequence infeasible 
through its guard.

• We might estimate how ‘difficult’ it is to 
satisfy a guard.

• Use the score for each transition to estimate 
the ‘feasibility’ of a sequence.

• This can direct us towards ‘better’
sequences.



19

TTCN-3 User Conference

Initial results

• Experiments with:
– a simple function that estimates ‘feasibility’
– two EFSMs

• we get:
– a correlation between estimate of feasibility and 

actual feasibility.

TTCN-3 User Conference

Papers
• These include:

– M. A. Fecko, M. U. Uyar, A. Y. Duale, P. D. Amer, 
2003, A Technique to Generate Feasible Tests for 
Communications Systems with Multiple Timers, 
IEEE/ACM Trans. on Networking, 11 5, pp. 796-809.

– A. Y. Duale and M. U. Uyar, 2004, A Method Enabling 
Feasible Conformance Test Sequence Generation for 
EFSM Models. IEEE Trans. on Computers, 53 5, pp. 
614-627.

– R. M. Hierons, T.-H. Kim, and H. Ural, 2004, On The 
Testability of SDL Specifications, Computer Networks, 
44 5, pp. 681-700.



20

TTCN-3 User Conference

Future Work

• Many problems to be solved:
– Transformations for non-linear arithmetic
– Domain specific transformations
– Estimating feasibility using ‘more refined’

information
– Larger case studies regarding estimating 

feasibility

TTCN-3 User Conference

Ordering to reduce the cost of 
test application



21

TTCN-3 User Conference

Motivation

• There is a cost associated with running our 
tests.

• This is a repeated cost due to regression 
testing.

• If we can reduce this cost/time we can 
speed up development and the fix/retest 
cycle.

TTCN-3 User Conference

Finite Adaptive Test cases

• Can be thought of as a decision tree.

a

b

0

0

1

1



22

TTCN-3 User Conference

Formally defining (finite) 
adaptive test cases

• We will initially consider adaptive test 
cases that represented by finite trees.

• Such an adaptive test case is one of:
– null (apply no input)
– (x,f) for an input x and function f from outputs 

to adaptive test cases. a

b

0

0

1

1

TTCN-3 User Conference

Context

• We will:
– Assume that the adaptive test cases are already given
– Assume that we reset between adaptive test cases
– Focus on minimising the cost of executing our adaptive 

test cases

• Note: sometimes this is important, but not always!
• We wish to minimise the cost of testing without 

reducing its inherent effectiveness.



23

TTCN-3 User Conference

Selective regression testing

• There are methods that choose a subset of a 
regression test suite.

• Most based on maintaining coverage.
• Can lead to significant reduction in test 

suite size but … also a reduction in test 
suite effectiveness.

TTCN-3 User Conference

Testing deterministic systems



24

TTCN-3 User Conference

An initial observation

• Suppose we apply adaptive test case γ, 
observe trace x/y, reset and apply γ again.

• Since the system under test is deterministic 
we will again observe x/y.
– There is no need to apply an adaptive test case 

more than once.
– If we have already observed trace x/y then we 

do not have to apply γ.

TTCN-3 User Conference

Test cases can relate

• Here a/0,a/0 for the first adaptive test case 
tells us that we will get response a/0 to the 
second (applied after a reset).

a

b

0

01

1

a

10

a

a

0

0 1

1



25

TTCN-3 User Conference

So

• We might have adaptive test cases γ1 and γ2 such 
that:
– There is some possible response to γ1 that would 

determine the response of the system under test to γ2.

• We denote this γ2 ≤ γ1.
• Clearly ≤ is not symmetric.
• Note: we (usually) can’t just eliminate γ2 in 

advance.

TTCN-3 User Conference

Consequence

• The expected cost of testing depends upon 
the order in which the adaptive test cases 
are to be applied.

• Question: how can we find an order that 
minimises the expected cost of testing?



26

TTCN-3 User Conference

Deciding ≤

• γ2 ≤ γ1 if and only if sav(γ1 ,γ2 ) where:
sav(γ,null) := true
sav(null,(x,f)) := false
sav((x1,f1),(x2,f2)) := (x1=x2) ∧ ∃y.sav(f1(y),f2(y))

• Good news: this requires time that is linear
in the size of the adaptive test cases.

TTCN-3 User Conference

The relation ≤ is not antisymmetric

a
0

1

1
a

0

a

b
0

0

1

1



27

TTCN-3 User Conference

The relation ≤ is not transitive

a

a
0

01

1
b

10

a

a
0

0

1

1

a

b
0

01

1
a

10

TTCN-3 User Conference

The optimisation problem

• Given our set of adaptive test cases we want 
to:
– Find an ordering that minimises the expected 

cost of testing.
• We can rephrase this as:

– Find an ordering that maximises the expected 
saving through not having to apply some of the 
adaptive test cases.



28

TTCN-3 User Conference

The dependence digraph

• Given set Γ ={γ1,…, γn} of adaptive test 
cases the dependence digraph G=(V,E) is:
– V={v1,…,vn}
– There is an edge from vi to vj in E if and only if 
γj ≤ γi.

TTCN-3 User Conference

Example

• What is the best ordering given the 
following dependence digraph?

v1

v2 v3

v4v5



29

TTCN-3 User Conference

This order?

1

2

3 4

5

TTCN-3 User Conference

And this one?

v1

v2
v3

v4v5



30

TTCN-3 User Conference

One order

1

2

3 4

5

TTCN-3 User Conference

An alternative

1

2 3

4 5



31

TTCN-3 User Conference

Solving in terms of the 
dependence digraph

• If we consider only G then the optimal order 
is:
– The order that minimises the number of edges 

that ‘point backwards’
• Finding this is an instance of the Feedback 

Arc Set (FAS) problem.
• Our problem is NP-hard.

TTCN-3 User Conference

Merging adaptive test cases

• These may be merged

a

a

0

0 1

1
a

0

b
0 1

1



32

TTCN-3 User Conference

Merging is not confluent

• How can we find a ‘best’ way of merging?

a

a

0

0 1

1

a
0

b
0 1

1

a
0

c
0 1

1

TTCN-3 User Conference

Reducing the size of the problem

• We can:
– Merge adaptive test cases
– Separately consider classes of ‘independent’

adaptive test cases.
• Result:

– these two approaches do not ‘conflict’.



33

TTCN-3 User Conference

A special case: acyclic 
dependence digraph

• Here we simply repeat the following until 
all adaptive test cases have been chosen:
– Choose a vertex vi of G with no edge entering 

it.
– Add γi to the end of the current order and delete 

vi and the corresponding edges from G.
• We are finding an ordering based on a 

DAG.

TTCN-3 User Conference

A simple algorithm

• We can:
– Solve the FAS problem to find some feedback 

arc set A.
– Let G’=(V,E\A)
– Find an order based on G’



34

TTCN-3 User Conference

Another factor: expected saving

• The potential saving varies.
• So does the likelihood of saving:

– If γ2 ≤ γ1, how likely is it that we will have to 
use γ2 if we first use γ1?

• We might estimate the expected saving
from using γ1 before γ2?

• A simple approach: give the dependence 
digraph weighted edges.

TTCN-3 User Conference

A complication

• There can be a relationship between the 
edges of the dependence digraph.

• Each is related to the other, but the savings 
are mutually exclusive.

a

a
0

0 1

1
a

0
b

0 1

1



35

TTCN-3 User Conference

Infinite Adaptive Test Cases

TTCN-3 User Conference

Adaptive test case need not be 
bounded

• We have assumed that our adaptive test 
cases are given by finite trees.

• This does not allow us to include tests such 
as: continue doing ‘x’ until ‘y’ happens and 
then …

• In order to represent these as trees we need 
infinite trees.



36

TTCN-3 User Conference

Tests are FSMs

• An FSM representing an adaptive test case 
in which we repeatedly apply a, looping 
until we receive output 1.

• There is one final state.

a/0
a/1

TTCN-3 User Conference

Languages

• Given an FSM M we let L(M) denote the 
corresponding regular language.

• If we have FSMs M1 and M2 representing 
adaptive test cases γ1 and γ2 respectively 
then the response to γ1 can predict the 
response to γ2 if and only if:
– There is a sequence in L(M2) that is a prefix of 

a sequence in L(M1).



37

TTCN-3 User Conference

A decision procedure

• Given adaptive test cases γ1 and γ2 it is 
sufficient to do the following:
– Define FSMs M1 and M2 representing γ1 and γ2

respectively in which every state of M1 is a 
final state.

– The response to γ1 can predict the response to γ2
if and only if L(M1)∩L(M2)≠∅.

• This is decidable in polynomial time.

TTCN-3 User Conference

Nondeterministic 
Implementations



38

TTCN-3 User Conference

The issue

• We can no longer predict the behaviour of 
an adaptive test case based on a trace.

• Even if we apply the same adaptive test 
case again, we can observe a different trace.

TTCN-3 User Conference

Repeating tests

• Suppose we apply an adaptive test case γ
10 times and observe only two traces.

• Is this different from only seeing two traces 
having applied it 1000 times?



39

TTCN-3 User Conference

Possible approaches

• We can produce results by either:
• Making a fairness assumption
• Assuming that all possible observations have at least 

a given probability
• Making no assumptions

• The stronger the assumptions made:
• the greater the potential for reducing the cost of 

testing
• the greater the potential for reducing test 

effectiveness.

TTCN-3 User Conference

Fairness Assumptions

• We assume that for some predetermined k, if we 
apply an adaptive test case k times then we see all 
possible responses.

• If in testing we apply each adaptive test case k
times then we can apply analysis similar to that for 
deterministic implementations.

• We get results similar to the deterministic case.



40

TTCN-3 User Conference

Bounds on probabilities

• We could assume that:
– In every state s of the SUT and for input x, each 

possible response of the SUT to x when in s has 
probability at least p for some fixed/known p.

• We can then use results from statistical 
sampling theory to provide a degree of 
confidence in having observed all possible 
traces in response to an adaptive test case.

TTCN-3 User Conference

How it works

• We apply each adaptive test case a 
sufficient number of times for us to have the 
required confidence that no other traces can 
result from its application.

• We can then apply the function defined for 
the fairness assumption.



41

TTCN-3 User Conference

Making no assumptions

• We have observed all possible responses of 
the SUT to γ if we have observed every 
trace than any implementation can produce 
in response to γ.

• So: the response to γ can be determined by a 
set of adaptive test cases γ1,…, γn if and 
only if:
– L(γ )⊆ L(γ 1) ∪… ∪L(γ n)

TTCN-3 User Conference

On-the-fly methods

• There are on-the-fly methods for 
deterministic implementations

• These will do no worse than the preset 
methods

• However, they require a more sophisticated 
environment and additional processing 
during the application of a test case.



42

TTCN-3 User Conference

Papers - ordering
The following are particularly relevant.

• R.M. Hierons and H. Ural, 2003, Concerning the ordering of adaptive 
test sequences, FORTE.

• R.M. Hierons and H. Ural, 2007, Reducing the cost of applying 
adaptive test cases, Computer Networks, 51 1, pp. 224-238.

• R. M. Hierons, 2006, Applying adaptive test cases to nondeterministic 
implementations, Information Processing Letters, 98 2, pp. 56-60.

• A. Petrenko and N. Yevtushenko, 2005, Conformance Tests as 
Checking Experiments for Partial Nondeterministic FSM, FATES.

• Jourdan, G-V, Ural, H., and Zaguia, N., 2005, Minimizing the number 
of inputs while applying adaptive tests, Information Processing 
Letters, 94 4, pp. 165-169.

TTCN-3 User Conference

Future work
• Could include:

– Optimization using wider range of 
sources of information.

– Test cases that are timed, distributed …
– Empirical studies.
– On-the-fly with non-deterministic 

implementations.
– Combining with selective regression 

testing?



43

TTCN-3 User Conference

Conclusions

• MBT can lead to greater test automation
• It can help us to reason about test 

effectiveness.
• However, it requires testers to produce 

models
• There are many open questions!

TTCN-3 User Conference

Questions?


