
Run-time test configuration for load testing 2007-05-15

Ericsson AB 2007 1

Run-time test configurations
for load testing

Gábor Ziegler,
Ericsson Hungary Ltd.

© Ericsson AB 2007 ETSI TUC 2007 Run-time test configuration for load testing 2007-05-152 (25)

Contents
� Introduction

– What is TITANSim
– Motivation for TITANSim
– Functional description of the parts of TITANSim

� CLL, Application Libraries and Control Logic
– Three different perspectives of TITANSim:

� HW, SW, Run-time configurations
� Comparison of the possible test configurations

– “local scheduling” vs. “central scheduler PTC”
� Conclusions and questions

Run-time test configuration for load testing 2007-05-15

Ericsson AB 2007 2

Introduction
About TITANSim

© Ericsson AB 2007 ETSI TUC 2007 Run-time test configuration for load testing 2007-05-154 (25)

Introduction
� TITANSim is aimed at performance testing

– With TTCN-3 as the specification language
– With Ericsson’s internal TTCN-3 Executor and Compiler

tool
� Performance testing needs highly optimized test suite

code
� Two contradicting requirements:

– A framework shall be general � generalization
– Optimization is task specific � specialization

Run-time test configuration for load testing 2007-05-15

Ericsson AB 2007 3

© Ericsson AB 2007 ETSI TUC 2007 Run-time test configuration for load testing 2007-05-155 (25)

Motivation for TITANSim
� TTCN-3 and TITAN is widely used for functional testing

throughout Ericsson
� TITANSim aims to achieve cost savings via

– reuse of the function test code base
– reuse of testers’ competence
– reuse of existing, in-house tools
– reuse of the new performance test solution by different

projects through-out the company

Introduction
Functionalities and applications of TITANSim

Run-time test configuration for load testing 2007-05-15

Ericsson AB 2007 4

© Ericsson AB 2007 ETSI TUC 2007 Run-time test configuration for load testing 2007-05-157 (25)

Functionality of TITANSim CLL
� Run-time interaction with the test suite

– A dynamically configurable run-time GUI and …
– …Parameters
– …Statistics

� Generic support for common programming tasks
– Memory management support: “resource” pools
– Scheduling support

� A logging framework
� Generic support for distributed scheduling:

– EventQueue data type + support functions
� Concrete support for central scheduling

– Ready-made scheduler component for central scheduling
– Load balancing, regulated load, external execution control, traffic-

mixer and a graphical console for all these
� Other useful data types and algorithms:

– Linked lists (FreeBusyQueue), hash tables, binary search tree
(Red-Black trees)

© Ericsson AB 2007 ETSI TUC 2007 Run-time test configuration for load testing 2007-05-158 (25)

Functionality of Application
Libraries and Control logic
� Application libraries: simulated entity specific tasks

– Protocol message handling
– Inbound message routing in case of multiple generator PTC
– Protocol specific TITANSim parameters and TITANSim

statistics
– Building blocks and state-machine support for Control Logic

� Control logic: realization of particular traffic cases

Run-time test configuration for load testing 2007-05-15

Ericsson AB 2007 5

Introduction
The 3 perspectives of TITANSim

© Ericsson AB 2007 ETSI TUC 2007 Run-time test configuration for load testing 2007-05-1510 (25)

Views of a TTCN-3 load test library
� At least 3 perspectives have to be considered:

1. HW perspective: which hardware to use?
2. SW perspective: how to modularize your code?
3. Run-time perspective: what is the best run-time test-

configuration? Th is t a l k ’s ma in t o p i c

Run-time test configuration for load testing 2007-05-15

Ericsson AB 2007 6

© Ericsson AB 2007 ETSI TUC 2007 Run-time test configuration for load testing 2007-05-1511 (25)

UE#1 IMS Core

SIP PUBLISH

SIP 200 OK

SIP Registration
UE#1 IMS Core

SIP PUBLISH

SIP 200 OK

SIP RegistrationUE#1 IMS Core

SIP PUBLISH

SIP 200 OK

SIP Registration
UE#1 IMS Core

SIP PUBLISH

SIP 200 OK

SIP Registration
UE#1 IMS Core

SIP PUBLISH

SIP 200 OK

SIP RegistrationUE#1 IMS Core

SIP PUBLISH

SIP 200 OK

SIP Registration

1. The HW perspective

� One SW – many HW

SWcontrol

UE#1 IMS Core

SIP PUBLISH

SIP 200 OK

SIP Registration
UE#1 IMS Core

SIP PUBLISH

SIP 200 OK

SIP RegistrationUE#1 IMS Core

SIP PUBLISH

SIP 200 OK

SIP Registration
UE#1 IMS Core

SIP PUBLISH

SIP 200 OK

SIP Registration
UE#1 IMS Core

SIP PUBLISH

SIP 200 OK

SIP RegistrationUE#1 IMS Core

SIP PUBLISH

SIP 200 OK

SIP Registration
UE#1 IMS Core

SIP PUBLISH

SIP 200 OK

SIP Registration
UE#1 IMS Core

SIP PUBLISH

SIP 200 OK

SIP RegistrationUE#1 IMS Core

SIP PUBLISH

SIP 200 OK

SIP Registration
UE#1 IMS Core

SIP PUBLISH

SIP 200 OK

SIP Registration
UE#1 IMS Core

SIP PUBLISH

SIP 200 OK

SIP RegistrationUE#1 IMS Core

SIP PUBLISH

SIP 200 OK

SIP Registration

� SW and HW are
separated

� To expand load
capacity only HW
units shall be added

© Ericsson AB 2007 ETSI TUC 2007 Run-time test configuration for load testing 2007-05-1512 (25)

2. The SW perspective
� Three levels approach:

– “Core Load Library” (CLL)
� provides the generalization

– “Application specific framework libraries” (AppLibs)
� provides the ”specialization”
� code provided in-cooperation with project experts,

relies on core library code
– “Control logic”: can provided by non-experts, as well

� builds on both application specific and core libraries
code

Run-time test configuration for load testing 2007-05-15

Ericsson AB 2007 7

© Ericsson AB 2007 ETSI TUC 2007 Run-time test configuration for load testing 2007-05-1514 (25)

3 Run-time configuration perspective
� Careful trade-off must be made between

– Efficiency
– Resulted code complexity

� Load testing means concurrency handling:
– Many(!) parallel traffic flows…
– …over some shared resource pools!

� TTCN-3 has a special concurrency model
– PTC-s are run concurrently
– A PTC is a “single CPU system”

� No concurrency support below PTC level by the language
– PTC-s are run isolated from each other

� no shared memory
� Our dilemma: on which level do we handle the concurrency?

This talk’s main topic

© Ericsson AB 2007 ETSI TUC 2007 Run-time test configuration for load testing 2007-05-1515 (25)

Alternatives for run time
configurations
� The “simple” approach is follow the “usual” TTCN-3

semantics
– Concurrency is to be handled on PTC-level
– A single PTC is responsible for a single transaction

� The “advanced” approach is to let a single PTC handle
multiple concurrent transaction

– Concurrency is to be handled below PTC-level
– A single PTC is responsible for multiple transactions

Run-time test configuration for load testing 2007-05-15

Ericsson AB 2007 8

TITANSim Run-time test
configurations
Central scheduling

© Ericsson AB 2007 ETSI TUC 2007 Run-time test configuration for load testing 2007-05-1517 (25)

XXX_CT

XXX_YYY_Routing

YYY_PT

Host #j

Control logic
and stack for
protocol XXX

ZZZ_CT

ZZZ_WWW_Routing

Control logic
and stack for
protocol ZZZ

WWW_PT

Run-time
GUI/CLI

SUT

Traffic generator
components

Load measurement

XXX_Scheduler ZZZ_Scheduler

Central
scheduling

Host_AdminCPU monitoring

MainAdmin MTC Host #i
LoadRegulator

Execution Control

Host #mZZZ_Logger

ZZZ_Logger

External control

DBDB

Run-time test configuration for load testing 2007-05-15

Ericsson AB 2007 9

© Ericsson AB 2007 ETSI TUC 2007 Run-time test configuration for load testing 2007-05-1518 (25)

Central scheduling
� Pros

– It is the most user-friendly
– It requires no coding-paradigm change with respect to function

tests
– Suitable for ad-hoc load testing projects
– It can be used without an application library

� Can use ready-made scheduling functions that are totally
independent of load generator component-type

� Cons
– Less efficient
– Wrong scalability

� Each traffic initiation requires internal communication —
with a single central entity: extra overheads and delays

� Sharing data of a run-time database across traffic cases /
entities is difficult and inefficient

TITANSim Run-time test
configurations

Local (distributed) scheduling

Run-time test configuration for load testing 2007-05-15

Ericsson AB 2007 10

© Ericsson AB 2007 ETSI TUC 2007 Run-time test configuration for load testing 2007-05-1520 (25)

MTC Host #iLocal scheduling
Host #l

XXX_LGen_CT

XXX_YYY_Routing

YYY_TP

XXX_Logger

Host #j
Host #k

PtcFunctions
Control logic and
stack for protocol

XXX

ZZZ_LGen_CT

ZZZ_WWW_Routing

PtcFunctions
Control logic and

stack for protocol ZZZ

WWW_TP

ZZZ_Logger

Run-time
GUI/CLI

SUT

Traffic generator
components

Traffic generator
components

Load measurement

Host #m

ZZZ_ApplAdmin

MainAdmin
LoadRegulator

XXX_ApplAdmin

© Ericsson AB 2007 ETSI TUC 2007 Run-time test configuration for load testing 2007-05-1521 (25)

Local (distributed) scheduling
� Pros

– It is the most-efficient
– Less dependent on OS-scheduler
– Sharing data of a run-time database across traffic cases of the

same PTC can be easy and efficient
– Load generator PTC-s schedule on their own

� no internal communication overhead needed for load
generation

� They can run autonomously � scalability!
� Cons:

– It requires some sort of an application library: Explicit concurrency
handling shall be set up

– It requires coding-paradigm change with respect to FT: event-
based logic

– Writing and using reusable ready-made scheduling algorithms
requires dirty-tricks w.r.t. TTCN-3 language

Run-time test configuration for load testing 2007-05-15

Ericsson AB 2007 11

Thank you for your attention!
Questions?

© Ericsson AB 2007 ETSI TUC 2007 Run-time test configuration for load testing 2007-05-1523 (25)

