
1

Pattern-Based
Development of TTCN-3

Test Suites
Alain Vouffo, Ina Schieferdecker, E. Noumedem

(<vouffo,schieferdecker>@fokus.fraunhofer.de)

slide
2

TTCN-3 User Conference, Stockholm, 2007/05/31

Roadmap

• What are (Test) Patterns ?
• Why TTCN-3 Test Patterns ?
• Pattern Based TTCN-3 Test Development
• Evaluation of the Approach based on case study (OSA-

Parlay API)
• Conclusions and Outlook
• Questions

2

slide
3

TTCN-3 User Conference, Stockholm, 2007/05/31

Patterns Characteristics

• Identify and specify abstractions above level of single
instances or components in a software system

• Document existing well proven design experiences,
software architectures and guidelines

• Provide a common vocabulary and understanding for
design principles

• Address functional as well as non-functional
requirements for software systems.

• Can provide support for building software with defined
properties.

• Always come from practical use, although they are
themselves abstract.

slide
4

TTCN-3 User Conference, Stockholm, 2007/05/31

Example Software Design Patterns

• Software Design Patterns
• Model-View-Controller
• Proxy
• Proactor
• Visitor
• Adapter
• Singleton
• Observer
• Facade

3

slide
5

TTCN-3 User Conference, Stockholm, 2007/05/31

What are Test Patterns ?

• Test Patterns are an attempt to apply the pattern-based
approach known in general software design in developing
Test Systems

• Goals are the same as for general software patterns
• Documenting sound solutions
• Provide means for test system developers to focus more on what

to test and less on the notation itself
• Enhance reuse of test artifacts
• Common Vocabulary
• Simplify and fasten the test development process
• Increase level of automation through pattern-based test generation

• Test Patterns are the first step towards test libraries
• (Test) Patterns can be implemented in tools (e.g. Wizards,

Type completion, Code Generation)

slide
6

TTCN-3 User Conference, Stockholm, 2007/05/31

Motivations: Why Test Patterns with TTCN-3 ? (I)

• TTCN-3 Test Systems are increasingly complex
• Difficult to maintain
• Documentation Problem, because the test intents get loss in the

complexity
• Provide Test/System Developers a mean to express key

aspects of testing in a more abstract manner than TTCN-3
• Facilitate Model transformation from SUT Model to Test

Model
• Abstracting from too complex test specifications, without

losing the powerful features of the abstract test notation
being used

• Back to the essentials
• Without necessarily having to navigate through the TTCN-3

source, it should be possible to understand rapidly what actually
happens in a test case

4

slide
7

TTCN-3 User Conference, Stockholm, 2007/05/31

Motivations: Why Test Patterns With TTCN-3 ? (II)

• Growing complexity of the SUTs => growing complexity of
the ATS
• E.g. Middleware or Telecommunication Systems with several different

components providing and using several interfaces at the same time
(IMS, OSA-Parlay)

• The complexity of the Test System rises dramatically for performance and
load testing involving concurrent behaviour among the test components

• Less Readability of ATS
• Less Reusability => Maintenability => Costs

• Question: How to ensure that the test system, while
coping with the SUT‘s complexity, does not also turn into a
programming nightmare ? (Avoiding the „Who test the
tester“ dilemma).

• The Answer: Focus on the essential aspects => Test Patterns

slide
8

TTCN-3 User Conference, Stockholm, 2007/05/31

Motivations: TTCN-3 Test Development Process

Requirements Analysis

System Design
using Design Patterns (e.g. UML)

Coding in target language
(C, C++, Java etc.)

Software System Development TTCN-3 Test System Development

?

5

slide
9

TTCN-3 User Conference, Stockholm, 2007/05/31

Classification of TTCN-3 Patterns

• Test data patterns
• Test Data (TTCN-3 Templates) are defined for certain test

purposes or to fullfil certain constraints
• Incoming/Outgoing data (wildcards, optional fields)

• Behavioral test patterns
• Send – Receive
• Send – Discard
• Trigger – Receive
• Exception handling
• …

• Architectural test patterns
• Configurations
• Coordination and synchronization of Test Components

slide
10

TTCN-3 User Conference, Stockholm, 2007/05/31

Test Data Patterns: Examples

• Data Pattern Kinds
• Domain Partition
• Default Value
• Boundary Value
• Random Value

template EchoRequest m_echoRequest_extHdr_data (…) := {}

template EchoRequest mw_echoRequest (…) := {
ipv6Hdr := mw_ipHdr_nextHdr_srcDst(c_icmpHdr, p_src, p_dst),
extHdrList := *,
icmpType:= c_echoRequest,
icmpCode:= c_icmpCode0,
checksum:= ?,
identifier:= ?,
sequenceNumber:= ?,
data:= *

}

6

slide
11

TTCN-3 User Conference, Stockholm, 2007/05/31

Architectural Patterns: Examples

• Mesh Configuration Pattern

• PMP Pattern

slide
12

TTCN-3 User Conference, Stockholm, 2007/05/31

TTCN-3 Behavior Patterns: Examples

function <SendAndReceive> (template <T1> to_send,
(template <T> to_receive)+)
{

<send to_send>
<activate defaults>
(
<start guard timer>
<receive to_receive>
<stop guard timer>
<deactivate defaults>
)+

}

7

slide
13

TTCN-3 User Conference, Stockholm, 2007/05/31

Test Patterns: Methodology

Arch. Model

Data Model

SUT Model

Behavior Model

TTCN-3 ATS

Test Developer

Test System Arch.

Test Data

Test Behavior

TTCN-3 Libs

Hand-Written
TTCN-3 Code

Patterns Parameters
and Generation Rules(XML)

slide
14

TTCN-3 User Conference, Stockholm, 2007/05/31

Case Study: OSA-Parlay API Testing

• Pattern-Based Approach was used to write a test
suite for an operation-based system (OSA-Parlay
API)
• Challenges

• System specification in IDL or XML (TTCN-3 Mapping issues)
• Very complex SUT involving several hundreds interfaces
• Test System plays both client and server roles
• Operation-based system => No default behaviors =>

Exceptional behaviors must be handled explicitely

• Chances
• Good opportunity to demonstrate usage of TTCN-3 for such

systems

8

slide
15

TTCN-3 User Conference, Stockholm, 2007/05/31

Background and work presentation (I)

• Background: OSA-Parlay Architecture
• Open API specified by 3GPP,ETSI and Parlay Group.
• The aims are to enable Operator and 3rd party Applications developer to

use networks functionality independently of the underlying networks.
• Parlay/OSA APIs are specified in CORBA/IDL and XML/SOAP and define

three types of component: Framework, services capability server and
Applications Interface

• Current version of parlay is 6.0 whereas release 4 of 3rd version has
been use in this work. It is grouped on the following parts.

The Parlay APIs
Network Operator

Domain

Internet

IP
Network

Hosted Application
ServerApplicatio

nServe
rIntranet

Fire
wall

Parlay
Gateway

PSTN

Parlay/OSA Applications

Mobile
Network

Enterprise
Domain

Application
Server 3rd Party

Domain

Network

Call Control Mobility

User Interaction

Charging

Account Management Generic Messaging

Different part of the Parlay 3.1 API specification

Data Session
Control

Connectivity
Management

Terminal
Capabilities

Framework

slide
16

TTCN-3 User Conference, Stockholm, 2007/05/31

From SUT Specification to ATS (I): Test
Configuration

Client : IpInitial : IpAPILevelAuthentication Framework : IpAccess :
IpClientAPILevelAuthentication

1: initiateAuthentication()

2: selectEncryptionMethod()

3: authenticate()

7: requestAccess()

5: authenticate()

8: obtainInterface()

4: authenticationSucceeded()

6: authenticationSucceeded()

Test Component Type
MTC

IpInitial IpAPILevelAuth

IpAccess

Framework

IpClientAPILevelAuth

Generated TTCN-3
Component Types & Configuration

9

slide
17

TTCN-3 User Conference, Stockholm, 2007/05/31

From SUT Specification to ATS (II): Behavior
Functions

Client : IpInitial : IpAPILevelAuthentication Framework : IpAccess :
IpClientAPILevelAuthentication

1: initiateAuthentication()

2: selectEncryptionMethod()

3: authenticate()

7: requestAccess()

5: authenticate()

8: obtainInterface()

4: authenticationSucceeded()

6: authenticationSucceeded()

• Behavior functions are generated:
• Call_InitiateAuthentication()
• Call_SelectEncryptionMetho()
• Call_Authenticate()
• Call_AuthenticationSucceeded()
• GetCall_Authenticate()
• GetCall_AuthenticatedSucceeded()
• Call_RequestAccess()
• Call_ObtainInterface()

slide
18

TTCN-3 User Conference, Stockholm, 2007/05/31

Case Study: Generated TTCN-3 Code
Snippet

function call_viaPort_IpInitial__initiateAuthentication(
inout IpInitial port_p,
in org__csapi__fw.TpAuthDomain
IpInitial__clientDomain_p,
in charstring IpInitial__authType_p,
in template org__csapi__fw
.TpAuthDomain rtn_templ_p) runs on IpInitial_Tester
return org__csapi__fw.TpAuthDomain {
var org__csapi__fw.TpAuthDomain rtnValue := …;

port_p.call (IpInitial__initiateAuthentication: {
IpInitial__clientDomain_p, IpInitial__authType_p
}, T_CLIENT) {
[] port_p.getreply (
IpInitial__initiateAuthentication_r_0 value rtn_templ_p) -> value

rtnValue {
log ("Method IpInitial__initiateAuthentication invoked successfully");
}
[] port_p.catch (
IpInitial__initiateAuthentication, org__csapi.TpCommonExceptions: ?)

{
setverdict (inconc);

}
…
[] port_p.getreply {

setverdict (fail);
}
[] port_p.catch {

setverdict (fail);
}
[] port_p.catch (timeout) {

setverdict (fail);
}
}
return rtnValue;
}

The highlighted part of the code snippet represents the core
test behaviour. Everything else is implicit, but still required
=> Could be hidden away from the user based on
predefined rule/pattern

10

slide
19

TTCN-3 User Conference, Stockholm, 2007/05/31

OSA Parlay Case Study: Results and Findings

• TTCN-3 Library for OSA-Parlay successfully generated
• Very helpful in speeding up development process

• Tests successfully executed against real-life
implementations

• Brute force not efficient
• Too much potentially unused code generated

• Human intervention is required for selecting relevant SUT
interfaces and messages for more efficient code
generation

• Approach applicable for Asynchronous (Message-based)
communication as well, however
• Refinements of behaviour model required
• More convenient Approach for patterns definition and code

generation rules required (currently hard-coded in XML)

slide
20

TTCN-3 User Conference, Stockholm, 2007/05/31

Conclusions and Outlook

• Pattern-oriented Test Development has been used
successfully in testing operation-based systems with
TTCN-3

• Approach is also applicable for message-based systems
(e.g. protocol stacks).

• A mean for expressing test patterns is required to
decouple from the complexity of the systems to be tested

• Test Patterns can effectively fill the gap between system
specification and test specification => facilitate test
automation

11

slide
21

TTCN-3 User Conference, Stockholm, 2007/05/31

Outlook: Which notation for TTCN-3 Patterns ?

• Issue of notation is not essential but worth discussing
• SoA

• UML & affiliates (U2TP
• SDL
• XML
• Others ?

• Future
• TTCN-3 ?

