Introduction to TTCN-3

Andrej Pietschker, PhD, CT SE 1
Andrej.Pietschker@siemens.com

TTCN-3 (1)

- The Testing and Test Control Notation
- The standardized test specification and test implementation language
- Developed based on the experiences from previous TTCN versions
- Applicable for all kinds of black-box testing for reactive and distributed systems, e.g.,
 - Telecom systems (ISDN, ATM);
 - Mobile (telecom) systems (GSM, UMTS);
 - Internet (has been applied to IPv6, SIP);
 - CORBA based systems;
 - Java, XML, ...
TTCN-3 (2)

- Enable testing of current and upcoming technologies
- Consolidate test concepts
- Wider scope of application
 - applicable to many kinds of test applications not just conformance, i.e. also for development, system, integration, interoperability, scalability... testing
 - applicable in the telecom and datacom domain
 - used both for standardized test suites... and as a generic solution in software development

New Aspects in TTCN-3

- Triple C
 - Configuration: Dynamic concurrent test configurations with test components
 - Communication: Various communication mechanisms (synchronous and asynchronous)
 - Control: Test case execution and selection mechanisms
- Improved
 - Harmonized with ASN.1
 - Module concept
- Extendibility via attributes, external function, external data
- Well-defined syntax, static and operational semantics
- Different presentation formats
Overview on TTCN-3

ASN.1 Types & Values

TTCN-3 Core Language

Testcase `myTestcase()` runs on MTCType `system` TSType:
- `mydefault := activate (OtherwiseFail);`
- `verdict.set(pass);`
- `connect(PTC_ISAP1:CP_ISAP1.mtc:CP_ISAP1);`
- `map(PTC_ISAP1:ISAP1, system:TSI_ISAP1);`
- `PTC_ISAP1.start(func_PTC_ISAP1());`
- `PTC_MSAP2.start(func_PTC_MSAP2());`
- Synchronization();
- `all component.done;`
- `log(.Correct Termination.);`

TTCN-3 – Based Black-Box Testing

TTCN-3 Test Case

Port `send(Stimulus)` Port `receive(Response)`

• Assignment of a verdict

System Under Test
Component-Based Test System

SUT

TTCN-3 Test Case

TC

MTC

TCs

Test Configuration

Test System

Real Test System Interface

Abstract Test System Interface

MTC

TC

TCs

SUT

Connected Ports

IN

OUT

Mapped Ports

IN

OUT

INOUT
Message-Based Ports

• For sending and receiving messages for a given type

Send

PTC₁
P₁.send(Msg)

PTC₂
P₂.receive(Msg)

Receive

PTC₁ (out) P₂ (in)

Procedure-Based Ports

• For invoking operations, receiving operation calls, replying, raising exceptions as well as for receiving replies and catching exceptions

PTC₁

call

PTC₂

getcall

getreply or catch exception

reply or raise exception
Test Verdicts

- Test verdicts: none < pass < inconc < fail < error
- Each test component has its own local verdict, which can be set (setverdict) and read (getverdict).
- A test case returns a global verdict

Verdict returned by the test case when it terminates

Basic Elements of TTCN-3

- Module covers declarations and control
- Templates (test data description) and matching mechanisms (pattern matching)
- Test configurations
 - Formally defined interfaces to the SUT
 - Dynamic creation of test component
 - Concurrency to describe distributed test setups
- Test cases
 - Small (complete) separate compileable programs
 - Share (type and data) information
- Test verdicts
Demonstration

Test System

Test System User

TM

CH

SA

TCP/IP

SUT

TE

CD

PA
System Under Test

- GUI supported System to simulate two S65 mobile phones’ communication working with WWG8630
- Work as server side over TCP/IP (be able to handle multiple clients)
- Accept the client side message and send the acknowledgement back to client

System Adapter

- Override the Test Runtime Interface (TRI) from ETSI and different tools vendor, such as TriMap, TriCall, etc.
- Work as multi clients communicate with SUT over TCP/IP
- TriMap – Create the corresponding socket for the Test Component
- TriSend – Send the correct message (object) to the SUT over the corresponding socket and get the acknowledgement back from the SUT over the same socket
- TriUnmap – Close the corresponding socket
Test data

- Data type definitions are based on TTCN-3 predefined and structured types
- Templates define the test data
 - to either transmit a set of distinct values or to test whether a set of received values matches the template specification.
- Templates provide the following possibilities
 - they are a way to organize and to re-use test data, including a simple form of inheritance;
 - they can be parameterized;
 - they allow matching mechanisms;
 - they can be used with either message-based or procedure-based communications.

A Little bit on Syntax

- Case Sensitive!
 - 129 keywords, all lower case
- Identifiers start with a letter
- Comments
 - Multi line comments: /* */
 - Single line comments: //
- Statements are terminated with: ;
- Statement blocks are enclosed in: { }
- Assignment operator: :=
- Comparison Operators: !=, ==, <=, =>
TTCN-3 Types

- **Basic types:**
 - Boolean, Integer, Float, Char, Universal Char, Several String types, Objid, Verdicttype
- **Structured types:**
 - Record (ordered structure), Record Of (ordered list), Set (unordered structure), Set Of (unordered list), Enumeration und Union.
- **Any type**
- **Configuration types:**
 - Port types, Component types, Address, Defaulttype

Communication Ports

- Facilitate communication between test components and between test components and the test system interface
- A test port is modeled as an infinite FIFO queue
- Ports have direction (in, out, inout)
- There are three types of port
 - message-based, procedure-based or mixed
Test Configuration

• A configuration consists of
 • a set of inter-connected test components
 • with well-defined communication ports and
 • an explicit test system interface which defines the borders of the test system

• Within every configuration there is one and only one main test component (MTC)
 • MTC is created automatically at the start of each test case execution.
 • The behavior defined in the body of the test case is executed on this component.

• During execution of a test case other components can be created dynamically.
 • These test components are called parallel test components (PTCs).

Test Components

• Test components are the entities on which test behavior is executed in parallel
• Declarations may be made locally in a component
• A list of ports used by a component must be given
• Actual configurations are built dynamically in the test behavior using operations such as create, connect etc.
Test Behavior

- Functions are the building-blocks of test system behavior
- Functions have local declarations and a program part
- Can be
 - a ‘pure’ function doing some data calculation or
 - specify test behavior using communication operations such as send and receive
- External and pre-defined functions can be used

Test Behavior - Alternatives

- Whenever test component is ready to take a response from the SUT or a timeout

- Defines typically several alternatives, which
 - are evaluated according to their appearance
 - may be guarded
 - can be part of an altstep which may be explicitly called or activated as default

- Alternatives fork the test behavior, but those can be joined again after the end of an alternative
Altsteps and Defaults

- altsteps are used to specify default behavior or to structure the alternatives of an alt statement.
- The invocation of an altstep always relates to an alt statement.
- The invocation may be done:
 - either implicitly by the default mechanism or
 - explicitly by a direct call within an alt statement.

Test Cases

- Test cases are a special kind of function executed in the control part of a module.
- The interface part (runs on) references the MTC on which the test case will run.
- The system part (system) references the test system interface component. Can be omitted if the test case only consists of an MTC.
- The Behavior part defines the behavior of the MTC.
Module Control

- Module control is the “main part” of a TTCN-3 specification where test cases are executed
 - With the execute statement
 - Testcase execution
 - Can be parameterized
 - Returns the test verdict
 - Can be time-supervised
- Local declarations, such as variables and timers may be made in the control part
- Basic programming statements may be used to select and control the execution of the test cases

Module: Putting everything together

- Modules are the building blocks of all TTCN-3 specifications
- A test suite is a module
- A module has a definitions part and a control part
- Modules can be parameterised
- Modules can import definitions from other modules
Module Import

- Import of
 - Single definition
 \[\text{import type MyType from MyModuleC;}\]
 - All definitions
 \[\text{import all from MyModule;}\]
 - Groups
 \[\text{import group MyGroup from MyModule;}\]
 - Definitions of the same kind
 \[\text{import all template from MyModule;}\]
- Import is by default nonrecursive
- Name clashes are handled with module name prefixes

The TTCN-3 Set of Standards

- ETSI ES 201 873-1
 TTCN-3 Core Notation (CN)
- ETSI ES 201 873-2
 TTCN-3 Tabular Presentation Format (TFT)
- ETSI ES 201 873-3
 TTCN-3 Graphical Presentation Format (GFT)
- ETSI ES 201 873-4
 TTCN-3 TTCN-3 Semantics
- ETSI ES 201 873-5
 TTCN-3 TTCN-3 Runtime Interface (TRI)
- ETSI ES 201 873-6
 TTCN-3 TTCN-3 Control Interfaces (TCI)
Test Execution

The TTCN-3 Execution Interfaces

- **Standardized adaptation** for management, component handling and communication, external data representation with encoding/decoding and logging for local and distributed test setups
- **Well-defined interfaces** as a set of operations independent of the target, i.e. SUT, processing platform, implementation language, etc.
- Code from any compiler supporting/using this interface can be executed on any test platform/test device, which supports/uses this interface

- TRI – TTCN-3 Runtime Interface
- TCI – TTCN-3 Control Interfaces
TTCN-3 Tools
Tools

- Tool Provider
 - Testing Technologies
 - Telelogic
 - Danet
 - Open TTCN
 - Elvior
 - Metarga
 - MTP

- DaVinci Communication
- STS
- Internal
 - Nokia
 - Ericsson
 - Motorola

- Test Devices
 - Tektronix G20
 - NetTest InterWatch
 - Acacia Clarinet
 - Nethawk
 - Alcatel A1100
 - Rohde & Schwarz

- Official TTCN-3 website
 - http://www.ttcn-3.org/

Thank you! 謝謝！

Questions?