
1

1

Tutorial
Comparing JUnit,

TCL/TK and TTCN-3

by Bernard Stepien, Liam Peyton,
Pulei Xiong, Pierre Seguin

SchooI of Information Technology and Engineering

2

What does testing consist of?

1. Test specification
– Specify test data
– Specify test behavior as sequences of events
– Specify test outcome (pass/fail)

2. Perform the test
– Manage communication with SUT
– Invoke test cases
– Code or decode messages (telecom)

3. Analyzing test results
– Details to understand results (expected vs actual values)
– Tracing of test events
– Produce reports

2

3

Purpose of testing tools and
frameworks

• Help designing tests
• Reduce the coding effort for test execution
• Reduce the coding effort for test results

presentation and analysis

4

Categories of testing tools

• Generic tools and frameworks
• Targeted tools and frameworks (for

specific applications)
– Web testing
– Specific telecom protocols (SIP, SS7, 3GPP)

• Frameworks that address only part of the
testing problem.
– httpUnit: handles only the communication

management and codec of web applications.

3

5

Testing challenges

• Systems Under Test (SUTs) are
composed of a variety of components,
each of them can have one or many of the
following characteristics:
– Written in a different implementation language
– Run on different platforms
– Run on different locations
– Use different communication protocols

6

Test implementation choices

• Choices:
– General purpose programming language
– Specialized programming language

• Our study:
– TCL is a general purpose language
– TTCN-3 is a specialized language
– JUnit is a mix of general purpose (Java) and

specialized language (Framework classes)

4

7

Examples of specific testing tools
for Web application testing

Other projects that do similar things:
httpunit
webunit , http://sourceforge.net/projects/webunit/
in Python
opensta , http://opensta.org/
Windows only
RoboWeb , http://sourceforge.net/projects/roboweb/
in perl , with proxy. no html parsing, just regex asserts
logitest , http://sourceforge.net/projects/logitest
uses java swing browser, tests are in xml
Many others are listed at http://www.softwareqatest.com/qatweb1.html#LOAD

8

Tools and Frameworks under study

• JUnit
– A kind of generic testing tool for Java applications

only.

• TCL/TK
– An easy language that was not designed originally for

testing but is now a de facto standard for testing.

• TTCN-3
– A specialized standard testing language with

specialized testing tools

5

9

Concepts comparison summary

Tracing of test events

Display test verdict

Test results details

codec

Invoke test cases

typing

Test cases definition

concept

yesnoNo (only failures)

yesnoyes

yesnoYes (some)

Yes (API and
implementation
languages)

Powerful regular
expression feature

No, but other
frameworks available

yesyesYes (implied)

yesnoYes (classes)

yesnoYes

TTCN-3TCL/TKJUnit

10

A comparison of claims

• Collected from web sites or
documentations

• Main arguments:
– Coding effort
– Learning effort
– Cost
– Integration with other languages
– purpose

6

11

JUnit benefits
sources: IBM, Clarkware

• I do not have to write my own framework.
• It is open source, so it is free.
• Other developers in the open-source community

use it, so I can find a lot of examples.
• It allows me to separate test code from product

code.
• It is easy to integrate into my build process.
• JUnit tests are developer tests.
• JUnit tests are written in Java

12

JUnit is written in Java
http://clarkware.com/articles/JUnitPrimer.html

• The tests become an extension to the overall
software and code can be refactored from the
tests into the software under test.

• The Java compiler helps the testing process by
performing static syntax checking of the unit
tests and ensuring that the software interface
contracts are being obeyed

• Developer's write and own the JUnit tests

7

13

TCL benefits
http://www.tcl.tk/about/features.html

• Rapid development
• Graphical user interfaces
• Cross-platform applications
• Easy to learn
• Mature but Evolving
• Extend, Embed and Integrate
• Deployment
• Testing
• Network-aware applications
• The Tcl community
• It's free!

14

TCL Rapid development

• Tcl gets the job done faster: 5-10x faster
especially if the application involves:
– GUIs
– string-handling
– integration.

• Once an application is built in Tcl, it can
also be evolved rapidly to meet changing
needs

8

15

Use of TCL in Testing

• Tcl is an ideal language to use for automated
hardware and software testing.

• it may well be the dominant language used for this
purpose.

• Tcl can easily connect to testing hardware or intern al
APIs of an application, invoke test functions, chec k
the results, and report errors.

• Tcl's interpreted implementation allows tests to be
created rapidly

• tests can be saved as Tcl script files to reuse for
regression testing.

• Tcl allows you to connect directly to lower-level AP Is
within the application, which provides much more
precise and complete testing.

16

TTCN-3 benefits
source: www.ttcn-3.org

• Internationally standardized testing
language

• Specifically designed for testing and
certification

• A testing technology that applies to a
variety of application domains and types of
testing

• Offers potential for reducing training and
test maintenance costs significantly

9

17

How is TTCN-3 different
source: www.ttcn-3.org

• Rich type system including native list types and support for
subtyping

• Embodies powerful built-in matching mechanism
• Snapshot semantics, i.e., well defined handling of port and timeout

queues during their access
• Concept of verdicts and a verdict resolution mechanism
• Support for specification of concurrent test behaviour
• Support for timers
• Allows test configuration at run-time
• Tests focus only on implementation to be tested
• Not tied to a particular application or its interface(s)
• Not tied to any specific test execution environment, compiler or

operation system
• TTCN-3 as such is not executable and requires a

compiler/interpreter, adapter as well as codec implementations

18

Comparing the three languages

10

19

Test specification

• A testing example:
– Testing a simple web page content

• Three implementations of the same case study:
– JUnit
– TCL
– TTCN-3

• The three implementations have intentionally
and naively been coded in specific programming
styles to illustrate later some important
differences among them.

20

Example web page

11

21

JUnit source of inspiration
single values testing

• JUnit in conjunction with other frameworks
such as HtmlUnit is presented in litterature
as simple, easy to use and understand

example taken from the HtmlUnit Documentation:

public void testHtmlUnitHomePage () throws Exception {
final WebClient webClient = new WebClient();
final URL url = new URL("http://htmlunit.sourceforge.net");
final HtmlPage page = (HtmlPage)webClient.getPage(url);
assertEquals("htmlunit - Welcome to HtmlUnit", page.getTitleText());

}

22

Testing a web page JUnit
multiple values testing

public void testCategories () {
List urlList = new LinkedList();
String[] theLinkNames = {"Main Page", "Category List", "Shopping Cart",

"Blues", "Classical", "Jazz", "Opera", "Pop", "Rock", "Contact us"};

final WebClient webClient = new WebClient();
assertNotNull(webClient);
try {

final URL url = new URL("file:categories_list.html");
final HtmlPage theCurrentPage = (HtmlPage)webClient.getPage(url);

assertNotNull(theCurrentPage);
assertTrue(theCurrentPage.getWebResponse().getStatusCode() == 200);
assertTrue(theCurrentPage.getTitleText().equals("Category List"));

int textPosition = theCurrentPage.asText().indexOf("Ideal CD Store");
assertTrue (textPosition >= 0);

List theLinks = theCurrentPage.getAnchors();

int n = theLinks.size();

assertEquals(n, 10);

for(int i=0; i<n; i++) {
HtmlAnchor theAnchor = (HtmlAnchor) theLinks.get(i);
assertEquals(theAnchor.asText(), theLinkNames[i]);
urlList.add(theAnchor.getHrefAttribute());

}
} catch(Exception e) {…}

}

12

23

Testing a web page in TCL
using regular expression feature

package require http 1.0

proc testCategoriesPage {} {
puts “testing categories page test"

set categoriesPage [http_get http://localhost:8080/estore/servlet/Store?action=showCategoryList -query]
set categoriesPageData [http_data $categoriesPage]
set pageStatus [http_status $categoriesPage]

puts $categoriesPageData

puts "---"

if { $pageStatus != "ok" } {
puts "page status not ok - set verdict to fail"
return

}

set textFound [regexp "<html>.* <title>.*Category List.*</title>.*Ideal CD Store.*CSI5380 Project.*<.*\
href=.*>.*Main Page.*<.*href=.*>.*Category List.*<.*href=.*>.*Shopping Cart.*<.*href=.*>.*Blues.*<.*href=.*>.*Classical.*\
<.*href=.*>.*Jazz.*<.*href=.*>.*Opera.*<.*href=.*>.*Pop.*<.*href=.*>.*Rock.*" $categoriesPageData]

if { $textFound == 1 } {
puts "categories page has matched the expectation - verdict pass"

} else {
puts "categories page has NOT matched the expectation - verdict fail"

}
}

testCategoriesPage

24

TTCN-3 approach

• Define data types
• Create templates
• Use transparent and hidden TTCN-3

matching mechanism

13

25

Testing a web page in TTCN-3
Type declarations:

type record linkType {
charstring text,
charstring URL

}

type set of linkType linkSet ;

type record WebResponseType {
integer statusCode,
charstring title,
charstring content,
linkSet links

}

template linkSet categoriesPageLinks := {
{"Main Page", ?}, {"Category List", ?},
{"Shopping Cart", ?}, {"Contact us", ?}
{"Blues", ?}, {"Jazz", ?}, {"Classical", ?},
{"Opera", ?}, {"Pop", ?}, {"Rock", ?}

}

template WebResponseType categoriesPageResponse := {
statusCode := 200,
title := " Category List ",
content := pattern "*Ideal CD Store*(CSI5380 Project)*",
links := categoriesPageLinks

}

type port web_port_type message {
out charstring;
in WebResponseType

}

type component MTC {
port web_port_type web_port;

}

type component SystemType {
port web system_web_port[num_of_ptcs];

}

26

Testing a web page in TTCN-3
test behavior specification

testcase categoriesPageTest() runs on MTCType system SystemType {
timer responseTimer;
…
web_port.send ("http://137.122.88.254:8080/eStore/categoriesPage");
responseTimer.start(5.0);
alt {

[] web_port.receive (categoriesPageResponse) {
responseTimer.stop;
setverdict(pass)

}
[] web_port.receive {

responseTimer.stop;
setverdict(fail)

}
[] responseTimer.timeout {

setverdict(inconc)
}

};

control { execute(categoriesPageTest()) }

14

27

The TTCN-3 adaptation layer
(an excerpt of 200 lines of code)

public class WebTesting_TestAdapter extends TestAdapter
implements TriCommunicationSA, TriPlatformPA, TciEncoding {

…
public TriStatus triSend (TriComponentId componentId, TriPortId tsiPortId, TriAddress address,

TriMessage sendMessage) {

Byte [] mesg = sendMessage.getEncodedMessage();
String String theUrlStr = new String(mesg);

if(tsiPortId.getPortName().equals("systemUserWebPort")) {

final WebClient webClient = new WebClient();

try {
final URL url = new URL(theUrlStr);

theCurrentPage = (HtmlPage) webClient.getPage (url);

TriMessageImpl rcvMessage = new TriMessageImpl(theCurrentPage.asText().getBytes());

myCte.triEnqueueMsg (tsiPortId, new TriAddressImpl(new byte[] {}), componentId, rcvMessage);
} catch (…) { … }

}
…
}

28

The TTCN-3 codec
(an excerpt of 300 lines of code)

public class WebAndService_Codec extends AbstractBaseCodec implements TciCDProvided {

public Value decode (TriMessage message, Type type) {
if(type.getTypeClass() == TciTypeClass.RECORD) {

String theRecordName = type.getName();

if(theRecordName.equals("WebResponseType ")) {

try {
RecordValue cv = Decode_WebResponseType (type.newInstance(), msg, i_con);

return (Value) cv;
} catch(Exception iox) {… }

}
return null;

}

private RecordValue Decode_WebResponseType (Value value2feed, byte [] msg, int i_con) throws Exception {
Type type = value2feed.getType();
RecordValue theWebPageValue = null;
IntegerValue theStatusValue = null;
CharstringValue theTitleValue = null;
int theStatus = theAdapterInstance.theCurrentPage.getWebResponse().getStatusCode();
theStatusValue.setInt(theStatus);

String theTitle = theAdapterInstance.theCurrentPage.getTitleText();
theTitleValue.setString(theTitle);
….
return theWebPageValue;

}

15

29

Web page testing example
statistics

• JUnit: 43 lines
• TCL/TK: 30 lines
• TTCN-3:

– Abstract test suite: 63 lines
– Adaptation layer: 200 lines
– Codec: 300 lines
– Total lines: 563 lines

30

Statistics ?

• Are those statistics fair?
• The answer is no!
• Reasons:

– Numbers change rapidly when the number of
web pages to test increases:

• JUnit has a fixed coding effort (import statements)
and a large proportion of variable coding effort.

• TCL code is proportional to the number of web
pages tested.

• TTCN-3 has a large fixed coding effort part and
limited variable coding effort part

– The TCL solution has no GUI part

16

31

TTCN-3 coding effort structure

• Fixed coding effort :
– Type definitions
– Behavior definitions (if parametrized)
– Test adapter
– Codec

• Variable coding effort :
– Templates definitions
– Control part

32

TTCN-3 coding effort comparison

Fixed coding effort:

type definitions: 26 lines
Behavior definitions: 20 lines
module/control 4 lines
Test adapter: 200 lines
Codec: 300 lines

Total fixed part: 550 lines

Variable coding effort:

Templates definitions: 12 lines
Control part: 1 line

Total variable part: 13 lines

Total for one page: 563 lines

Li
ne

s
of

 c
od

e

563

Number of web pages tested
1 1000

TTCN-3

TCL

30

33

JUnit

43

19

17

33

Important remark about fixed and
variable parts of code

• All three approaches can be decomposed
into fixed and variable code parts in a
similar way with similar coding effort
savings.

• However, the main difference between
TTCN-3 and JUnit or TCL is that in TTCN-
3 there is a model that forces the tester to
decompose the problem that way.

34

Additional important
comparison elements

• The previous example was simple and
could be misleading.

• More complex problems reveal more
prominent differences:
– Matching mechanism
– Structuring concepts
– Tool results inspection features
– Complex behaviors specification
– typing

18

35

Matching mechanism comparison

36

Matching mechanism JUnit

• Only four categories of matching
– Expression evaluation to boolean

• assertTrue(<expression>)
• assertFalse(<expression>)

– Checking for nullity
• assertNull(object)
• assertNotNull(object)

– Equality between simple types
• assertEquals(String, String)
• …
• assertEquals(int, int)

– Equality between objects
• assertSame(Object, Object)
• assertNotSame(Object, Object)

19

37

Matching mechanism TCL

• Regular expressions can become overly
complex and unmanageable when there
are:
– Alternate values (“href” | “HREF”)
– Alternate sequence patterns (see music

categories list example. The list of categories
could be in different order)

38

Matching mechanism
TTCN-3

• As easy as a data assignment to a data
structure.

• Is more than a data assignment since for
each field various kinds of matching rules
can be specified.

• The TTCN-3 template concept allows
maximum re-use capabilities, thus a
natural structuring mechanism.

20

39

TTCN-3 matching mechanism
advantages

• Transparent matching of complex types
• Transparent matching of lists and sets
• Alternative values matching
• Ranges matching

40

Complex data structures matching

public void testListEquality(){
LinkedList list_1 = new LinkedList();
LinkedList list_2 = new LinkedList();

list_1.add(“john");
list_1.add(“mary");

list_2.add(“john");
list_2.add(“mary");

int n = list_1.size();

for(int i=0; i < n; i++) {
Object obj1 = list_1.get(i);

if(obj1 instanceof java.lang.String) {
Object obj2 = list_2.get(i);
if(obj2 instanceofjava.lang.String) {

String value_1 = (String) obj1;
String value_2 = (String) obj2;
assertEquals(value_1, value_2);

}
else fail();

}
else

fail();
}

}

type set of charstring myListType;

template myListType list_1 := {
“john”, “mary”

}
template myListType list_2 := {

“john”, “mary”
}

If(match (list_1, list_2)) {
setverdict(pass)

}
else { setverdict(fail) }

JUnit: 27 lines TTCN-3: 13 lines

21

41

Structuring concepts comparisons

• Structuring enables code re-usability
• Structuring improves clarity, thus makes

code easier to modify or maintain

42

Structuring potentials

• Factor out re-usable code
• Separate code by functionality

22

43

JUnit structuring concepts

• Test cases that are Java methods preceded by
the word ‘test’.

• Preamble and postamble that are always
executed to set a system in a testing state and
restore the system to its initial state whether the
test passed or failed.

• In JUnit/Java there is no separation between
elements of tests and the infrastructure that
extracts data elements.

• Factor out re-usable code in plain Java methods

44

JUnit - Using Java methods for
structuring

• Usual factoring out of re-usable code into
methods

• These methods are now part of the fixed code

public void testCategories () {
List urlList = new LinkedList();
String[] theLinkNames = {"Main Page", "Category List", "Shopping Cart",

"Blues", "Classical", "Jazz", "Opera", "Pop", "Rock", "Contact us"};

final HtmlPage theCurrentPage = GetWebPage (“file:categories_list.html)”;

assertNotNull(theCurrentPage);
assertTrue(theCurrentPage.getWebResponse().getStatusCode() == 200);
assertTrue(theCurrentPage.getTitleText().equals("Category List"));

verifyLinks (theLinkNames);

}

23

45

Structuring by functionality

• Three functionalities in the following code:
– Data extraction functionality
– Data matching functionality
– Data storing functionality

verifyLinks (List theLinkNames) {
for (int i=0; i<n; i++) {

HtmlAnchor theAnchor = (HtmlAnchor) theLinks.get(i) ;
assertEquals(theAnchor.asText(), theLinkNames[i]);
urlList.add (theAnchor.getHrefAttribute());

}
}

Extraction functionality

Matching functionality

Storing functionality

46

JUnit
proportion of non-matching functionality statements

public void testCategories() {
List urlList = new LinkedList();
String[] theLinkNames = {"Main Page", "Category List", "Shopping Cart",

"Blues", "Classical", "Jazz", "Opera", "Pop", "Rock", "Contact us"};

final WebClient webClient = new WebClient();
assertNotNull(webClient);
try {

final URL url = new URL("file:categories_list.html");
final HtmlPage theCurrentPage = (HtmlPage)webClient.getPage(url);

assertNotNull(theCurrentPage);
assertTrue(theCurrentPage.getWebResponse().getStatusCode() == 200);
assertTrue(theCurrentPage.getTitleText().equals("Category List"));

List theLinks = theCurrentPage.getAnchors();

int n = theLinks.size();

assertEquals(n, 10);

for (int i=0; i<n; i++) {
HtmlAnchor theAnchor = (HtmlAnchor) theLinks.get(i);
assertEquals(theAnchor.asText(), theLinkNames[i]);
urlList.add(theAnchor.getHrefAttribute());

}
}

catch (Exception e) {System.out.println("exception "+e.getMessage());fail(); }
}

24

47

TCL structuring concepts

• Procedures only.
• No concept of test cases.
• Structuring comparable to Java.
• How to structure regular expressions?

48

TTCN-3 structuring concepts

• within the Abstract layer:
– Test cases
– Functions
– Templates

• Separation of concerns:
– Between abstract and adaptation layer
– Between behavior and conditions governing

behavior in the abstract layer

25

49

Testcase parametrization
testcase webSystemTest(charstring theURL ,

WebResponseType theResponsePage)
runs on MTCType system SystemType {

timer responseTimer;
…
web_port.send (theURL);
responseTimer.start(10.0);
alt {

[] web_port.receive (theResponsePage) {
responseTimer.stop;
setverdict(pass)

}
[] web_port.receive {

responseTimer.stop;
setverdict(fail)

}
[] responseTimer.timeout {

setverdict(inconc)
}

};

50

Benefits of the TTCN-3
template concept

• TTCN-3 templates are a cross-breed
between data structures and functions ,
this allows:
– Static re-use which implies great structuring

qualities.
– Parametrization which allows dynamic re-use

of templates.
– Because TTCN-3 templates are strongly

typed, this forces the tester to specify a value
or rule.

26

51

Benefits of TTCN-3 separation of
concern

• Separation between abstract and concrete
layers:
– Improve clarity of the test behavior
– Re-usability
– Re-writability

• Separation between behavior and
conditions governing behavior

• Improve clarity of the test behavior
• Provide overview qualities

52

Separation of concerns between
abstract and concrete layers

Abstract
Test
Suite

Adaptation layer
Communication

with SUT
Codec

SUT

27

53

Separation between behavior and
conditions governing behavior

Templates definitions Behavior definitions

54

Separation of concern
post mortem example

• A company spent two person/years to develop a test
suite for a web application using JUnit and httpUnit.

• The test suite was hard to maintain due to the intensive
use of httpUnit methods buried deep in the code.

• A number of items could not be tested because httpUnit
did not provide appropriate features for that purpose.

• Converting to more appropriate htmlUnit would have
required massive changes (80% of the code consisted in
invocations to httpUnit methods).

• The test suite was merely scrapped and thus never
used.

28

55

Remarks on separation of concerns
in JUnit

• Nothing could prevent a tester to implement the
concept of separation of concerns in a general
purpose language like Java

• The only difference with JUnit/Java is that with
TTCN-3, the tester is forced to do so and thus
has no other choice than to be more efficient.

• TTCN-3 inherently provides a model for
efficiency.

56

Conclusions on structuring

• In JUnit/Java and TCL, structuring is at the
discretion of the test implementer.

• In TTCN-3, structuring is an integral part of the
model. There is no way to avoid it.

29

57

Tool results inspection features
comparison

58

JUnit tool features
Failure traces

junit.framework.ComparisonFailure: expected:<...> but was:<...XXX>
at junit.framework.Assert.assertEquals(Assert.java:81)
at junit.framework.Assert.assertEquals(Assert.java:87)
at MainPageTesting.matchWebPage(MainPageTesting.java:127)
at MainPageTesting.testCategoriesPage(MainPageTesting.java:101)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)
at java.lang.reflect.Method.invoke(Method.java:585)
at junit.framework.TestCase.runTest(TestCase.java:154)
at junit.framework.TestCase.runBare(TestCase.java:127)
at junit.framework.TestResult$1.protect(TestResult.java:106)
at junit.framework.TestResult.runProtected(TestResult.java:124)
at junit.framework.TestResult.run(TestResult.java:109)
at junit.framework.TestCase.run(TestCase.java:118)
at junit.framework.TestSuite.runTest(TestSuite.java:208)
at junit.framework.TestSuite.run(TestSuite.java:203)
at org.eclipse.jdt.internal.junit.runner.junit3.JUnit3TestReference.run(JUnit3TestReference.java:128)
at org.eclipse.jdt.internal.junit.runner.TestExecution.run(TestExecution.java:38)
at org.eclipse.jdt.internal.junit.runner.RemoteTestRunner.runTests(RemoteTestRunner.java:460)
at org.eclipse.jdt.internal.junit.runner.RemoteTestRunner.runTests(RemoteTestRunner.java:673)
at org.eclipse.jdt.internal.junit.runner.RemoteTestRunner.run(RemoteTestRunner.java:386)
at org.eclipse.jdt.internal.junit.runner.RemoteTestRunner.main(RemoteTestRunner.java:196)

30

59

JUnit mismatch display feature

• JUnit shows only what did not match
• It shows only the first mismatch
• Usable only for assertEquals() assertions
• Does not help for assertTrue() assertions

public void testAssertTrue(){

int X = 10;
assertTrue(X == 5);

}

In the above, JUnit does not display
The value of the variable X

assertEquals(X, “ClaXXXsical”

60

TCL/TK results analysis features

• Basically there are none
• However, because of TK, it is easy to

create a custom GUI to display results and
improve results analysis

• With TK, GUIs for displaying results can
be considered as very flexible. Other tools
have only fixed features that a user can
not modify.

31

61

TTCN-3 tools features

• Matching mechanism overview : in case of
mismatch, the values of all the field that caused
the mismatch can be viewed along with the
correct values for other fields.

• Logging : each event gets logged and thus the
sequence of events can be thoroughly
inspected. Thus tracing without the need of a
classical debugger.

• Event traceability : Logs are not limited to
display failures, they show successful events
too. This improves traceability.

62

Matching mechanism overview

32

63

Logging (graphical/textual)

64

Complex behaviors specification
comparison

33

65

Handling alternative behavior

Request_A

Response_B

E1 E2

Response_B

alt

ack

MSC

66

Representating alternative behavior
in JUnit

• Protocols testing often handles alternate
behaviors.

• JUnit can not handle alternatives with the
assert… methods.

• The assert needs to be replaced by
traditional if-then-else constructs.

• Traditional if-then-else constructs can
become rapidly hard to read when the
number of elements to compare increases

34

67

Handling alternatives in JUnit

• If line 1 fails, line
2 and 3 become
unreachable

Wrong specification

// send the request A

1: assertEquals(resp, “response_B”);

2: assertEquals(resp,”ack”);

3: assertEquals(resp,”response_B”);

Solution:

If(resp == “response_B”) { } // silent move
else If(resp == “ack”) {

If(resp == “response_B”) { } // …
else fail();

}
else fail();

68

Handling alternatives in TCL

• Same characteristics as JUnit/Java except
potentially with fewer key words.

35

69

Representing alternate behavior in
TTCN-3

• TTCN-3 has a natural alternate construct.
• Each alternative is tried until one matches
• Verdicts are set according to test purposes
• The combination of the TTCN-3 alt construct and

template concept naturally eliminates the
complexity of the behavior representation when
the elements being compared are complex
themselves.

• TTCN-3 nesting of alternatives constitute a
natural tree representation.

70

Handling alternate behavior
in TTCN-3

myport.send (request_A);

alt {
[] myport.receive (response_B) { setverdict(pass)}
[] myport.receive (ack) {

alt {
[] myport.receive (response_B) { setverdict(pass)}
[] myport.receive { setverdict(fail) }

}
}
[] myport.receive { setverdict(fail) }

}

36

71

Benefits of the TTCN-3 tree
concept

• Separation between behavior and
conditions governing behavior

• Hides the complex if-then-else constructs.
• Thus, improves clarity of behavior and

gives overview qualities.
• Further structuring concept: the altstep

72

Strong typing

Benefits of strong typing ?

37

73

Typing

• JUnit uses Java classes for typing
• TCL has no typing at all, thus it is very

easy to mix variables for different
purposes in critical decisions

• TTCN-3 is strongly typed
• TTCN-3 has operational semantics

74

Is Java strongly typed?

• Yes, but …
• However, the combination Java/JUnit is

not really typed

38

75

Typing problems with Java
mixing up method calls

Public void testCars() {
…
matchCars(theExpectedCar, theReceivedCar);

}

public static void matchEngines (Engine engine_a, Engine engine_b) {
assertEquals(engine_a.typeOfFuel, engine_b.typeOfFuel);
assertEquals(engine_a.numberOfPistons, engine_b.numberOfPistons);

}

public static void matchCars (Car car_a, Car car_b) {
assertEquals(car_a.color, car_b.color);
//matchEngines(car_a.engine, car_b.engine);
displayEngines (car_a.engine, car_b.engine);

}

public static void displayEngines (Car car_a, Car car_b) {
System.out.println("engines comparison");
System.out.println("type of fuel: "+car_a.engine.typeOfFuel+" vs " + car_b.engine.typeOfFuel);
System.out.println("number of pistons: "+car_a.engine.numberOfPistons+" vs " +

car_b.engine.numberOfPistons);
}

76

Lack of typing with TCL
• Both procedure invocations produce the same result.
• However the first invocation may not be desirable and may

lead to wrong conclusions.
• The error is detected only at run time

proc myProc { x } {

if { $x != 5 } { puts “Error x is Not equal to 5; fail" }

}

myProc "mary had a little lamb"

myProc 1042

39

77

Strong typing benefits with TTCN-3
accidental omissions detection

A field assignment can not be omitted in a template if it is not declared
as optional:

template Car anotherCar := {
color := "blue"

}

Above, we omitted the specification for the field named “engine”.

Compile time error message:

11:53:27:062: [ERROR]: '{ color := "blue" }' of type 'template mapping { charstring:length(4) color }' is not
of type 'template Car'

11:53:27:062: [ERROR]: (reason) not optional: (field 'engine') '{ color := "blue" }.engine' must not be omitted
11:53:27:078: [ERROR]: compilation finished with errors

78

Strong typing benefits with TTCN-3
mixing up functions

You can not invoke a function to specify a template field matching value
if the return value type is wrong:

template Car aWrongCarTemplate := {
color := "blue",
engine := displayMyFavoriteEngine()

}

function displayMyFavoriteEngine() {
log ("I like diesel because it is cheaper");
log ("I like 8 pistons because it looks better");

}

Compile time error message:

12:04:04:515: [ERROR]: '{ color := "blue", engine := displayMyFavoriteEngine() }' of type 'template mapping
{ charstring:length(4) color; void engine }' is not of type 'template Car'

12:04:04:515: [ERROR]: (reason) 'displayMyFavoriteEngine()' of type 'void' would have to be of type 'record
{ charstring typeOfFuel; integer numberOfPistons }'

12:04:04:546: [ERROR]: compilation finished with errors

40

79

Semantics

• There are no semantics either with
JUnit/Java nor TCL.

• The TTCN-3 standard specifies both static
and operational semantics.

• Any violation of the semantics is detected
at compile time.

Example:

You can not use a timer variable in the place
of a template in a receive statement.

80

Programming styles

• It all depends how we code it!
• In TTCN-3, there is a clear model that is

enforced, thus any deviation from the
model is immediately and automatically
detected at compile time.

• Consequently, TTCN-3 is safer and thus
cheaper.

41

81

Benefits of standardization

• Everybody uses the same specification
language.

• Everybody follows the same model
• Everybody will thus understand what another

party within or outside the company means and
does.

• Tool vendors will provide utilities such as codecs
for well known classes of problems.

• Standardization bodies will publish ready to use
test suites (ETSI, …)

82

Contact information

• bernard@site.uottawa.ca
• lpeyton@site.uottawa.ca
• xiong@site.uottawa.ca
• http://www.site.uottawa.ca/~bernard/ttcn.ht

ml
• http://www.site.uottawa.ca/~lpeyton/

