The new Internet Protocol security
IPsec testing with TTCN-3

Ariel Sabiguero \(^1,^2\) María Eugenia Corti\(^1\) César Viho\(^2\)

\(^1\)Instituto de Computación, Facultad de Ingeniería, Universidad de la República
J. Herrera y Reissig 565, Montevideo, Uruguay
{asabigue,mcorti}@fing.edu.uy

\(^2\)IRISA / Dionysos
Campus Universitaire de Beaulieu
35042 Rennes CEDEX, France
{asabigue,viho}@irisa.fr

30/05/2007
IPsec

Overview of relevant IPsec concepts
General test description
Selected test case description

Selected tools
IRISA T3DevKit
GNU crypto library

Test case implementation
Implementation alternatives
CoDec based development
CoDec+ExtFunctions development

Comparison
Code engineering
Test Specification Size
Performance

Summary
Suite of security protocols

<table>
<thead>
<tr>
<th></th>
<th>Authentication Header (AH)</th>
<th>Encapsulating Security Payload (ESP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connectionless Integrity</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Ariel Sabiguero, María Eugenia Corti, César Viho

The new Internet Protocol security IPsec testing with TTCN-3
Suite of security protocols

<table>
<thead>
<tr>
<th></th>
<th>Authentication Header (AH)</th>
<th>Encapsulating Security Payload (ESP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connectionless</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Integrity</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Data Origin</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Authentication</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Suite of security protocols

<table>
<thead>
<tr>
<th></th>
<th>Authentication Header (AH)</th>
<th>Encapsulating Security Payload (ESP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connectionless</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Integrity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Origin</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Authentication</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Access Control</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
Suite of security protocols

<table>
<thead>
<tr>
<th></th>
<th>Authentication Header (AH)</th>
<th>Encapsulating Security Payload (ESP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connectionless</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Integrity</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Data Origin</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Authentication</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Access Control</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Confidentiality</td>
<td>×</td>
<td>✓</td>
</tr>
</tbody>
</table>

Ariel Sabiguero, María Eugenia Corti, César Viho
Set of cryptographic algorithms

Encryption algorithm
- 3DES-CBC

Authentication algorithm
Set of cryptographic algorithms

Encryption algorithm
 ▶ 3DES-CBC
 ▶ NULL

Authentication algorithm
Set of cryptographic algorithms

Encryption algorithm
- 3DES-CBC
- NULL
- AES-CBC

Authentication algorithm
- HMAC-SHA1-96
- NULL
- AES-XCBX-MAC-96
Set of cryptographic algorithms

<table>
<thead>
<tr>
<th>Encryption algorithm</th>
<th>Authentication algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>3DES-CBC</td>
<td>HMAC-SHA1-96</td>
</tr>
<tr>
<td>NULL</td>
<td>NULL</td>
</tr>
<tr>
<td>AES-CBC</td>
<td>AES-XCBX-MAC-96</td>
</tr>
<tr>
<td>AES-CTR</td>
<td></td>
</tr>
</tbody>
</table>
Set of cryptographic algorithms

Encryption algorithm
- 3DES-CBC
- NULL
- AES-CBC
- AES-CTR

Authentication algorithm
- HMAC-SHA1-96
Set of cryptographic algorithms

Encryption algorithm
- 3DES-CBC
- NULL
- AES-CBC
- AES-CTR

Authentication algorithm
- HMAC-SHA1-96
- NULL
Set of cryptographic algorithms

<table>
<thead>
<tr>
<th>Encryption algorithm</th>
<th>Authentication algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ 3DES-CBC</td>
<td>▶ HMAC-SHA1-96</td>
</tr>
<tr>
<td>▶ NULL</td>
<td>▶ NULL</td>
</tr>
<tr>
<td>▶ AES-CBC</td>
<td>▶ AES-XCBX-MAC-96</td>
</tr>
<tr>
<td>▶ AES-CTR</td>
<td></td>
</tr>
</tbody>
</table>
Overview of relevant IPsec concepts

General test description

Selected test case description

IPsec modes

Transport mode

Tunnel mode
SPD and SA

Security Policy Database

▶ control IPsec traffic
SPD and SA

Security Policy Database

- control IPsec traffic
- consulted for incoming and outgoing traffic
SPD and SA

Security Policy Database
- control IPsec traffic
- consulted for incoming and outgoing traffic

Security Association
SPD and SA

Security Policy Database
- control IPsec traffic
- consulted for incoming and outgoing traffic

Security Association
- simplex "connection" that affords security services to the traffic carried by it.
SPD and SA

Security Policy Database
- control IPsec traffic
- consulted for incoming and outgoing traffic

Security Association
- simplex “connection” that affords security services to the traffic carried by it.
- each SA an entry in the SA Database (SAD)
SPD and SA

Security Policy Database

- control IPsec traffic
- consulted for incoming and outgoing traffic

Security Association

- simplex "connection" that affords security services to the traffic carried by it.
- each SA an entry in the SA Database (SAD)
- one SA for each traffic direction
v6RL test suite coverage

- Tunnel and Transport mode
v6RL test suite coverage

- Tunnel and Transport mode
- A combination of authentication and encryption algorithms
v6RL test suite coverage

- Tunnel and Transport mode
- A combination of authentication and encryption algorithms
- Only ESP
v6RL test suite coverage

- Tunnel and Transport mode
- A combination of authentication and encryption algorithms
- Only ESP
- Manual key configuration
v6RL test suite coverage

- Tunnel and Transport mode
- A combination of authentication and encryption algorithms
- Only ESP
- Manual key configuration
- ICMPv6 messages exchange
Test case 5.2.3

- Transport mode tested
- 3DES-CBC encryption algorithm
- NULL authentication algorithm
Test case 5.2.3

- Transport mode tested
- 3DES-CBC encryption algorithm
- NULL authentication algorithm
Test case 5.2.3

- Transport mode tested
- 3DES-CBC encryption algorithm
- NULL authentication algorithm
T3DevKit & IPv6 ATS

Why?

▶ Helper tool for implementing TA-PA, TRI-SA and TCI-CD
T3DevKit & IPv6 ATS

Why ?

- Helper tool for implementing TA-PA, TRI-SA and TCI-CD
- Works in C++ environment, adequate for IPsec testing
T3DevKit & IPv6 ATS

Why?
- Helper tool for implementing TA-PA, TRI-SA and TCI-CD
- Works in C++ environment, adequate for IPsec testing
- Existing IPv6 ATS enables code reuse (IPv6, ICMPv6, etc.)
T3DevKit & IPv6 ATS

Why?

- Helper tool for implementing TA-PA, TRI-SA and TCI-CD
- Works in C++ environment, adequate for IPsec testing
- Existing IPv6 ATS enables code reuse (IPv6, ICMPv6, etc.)
- Freely available under CeCILL-C license
GNU crypto library

- General purpose cryptographic library
GNU crypto library

- General purpose cryptographic library
- Several cryptographic algorithms provided
GNU crypto library

- General purpose cryptographic library
- Several cryptographic algorithms provided
- All IPsec cryptographic functions implemented
GNU crypto library

- General purpose cryptographic library
- Several cryptographic algorithms provided
- All IPsec cryptographic functions implemented
- Broad user base and examples on-line
GNU crypto library

- General purpose cryptographic library
- Several cryptographic algorithms provided
- All IPsec cryptographic functions implemented
- Broad user base and examples on-line
- Freely available under LGPL license
Test case engineering

- Just an ICMPv6 Echo Request and Echo Reply exchanged
- Simple message sequence
- Messages use 3DES-CBC encryption with PSK
- Complex assembly and disassembly
- Where to perform cryptographic operations?
Test case engineering

- Just an ICMPv6 Echo Request and Echo Reply exchanged
- Simple message sequence
- Messages use 3DES-CBC encryption with PSK
- Complex assembly and disassembly
- Where to perform cryptographic operations?
Test case engineering

- Just an ICMPv6 Echo Request and Echo Reply exchanged
- Simple message sequence
- Messages use 3DES-CBC encryption with PSK
- Complex assembly and disassembly
- Where to perform cryptographic operations?
Test case engineering

- Just an ICMPv6 Echo Request and Echo Reply exchanged
- Simple message sequence
- Messages use 3DES-CBC encryption with PSK
- Complex assembly and disassembly
- Where to perform cryptographic operations?
 - CoDec
 - External Functions
CoDec only Transmission

- ESP message modeled in TTCN-3
- Checksum and padding fields calculated in the CoDec
- Payload encrypted in the CoDec

```
Link1.send(ICMPv6WithESP_EchoRequest_AuthNULL(SPI_SA1, ''0));
```
CoDec only Transmission

- ESP message modeled in TTCN-3
- Checksum and padding fields calculated in the CoDec
- Payload encrypted in the CoDec

```
Link1.send(ICMPv6WithESP_EchoRequest_AuthNULL(SPI_SA1, ''0));
```

Ariel Sabiguero, María Eugenia Corti, César Viho
CoDec only Transmission

- ESP message modeled in TTCN-3
- Checksum and padding fields calculated in the CoDec
- Payload encrypted in the CoDec

```c
Link1.send(ICMPv6WithESP_EchoRequest_AuthNULL(SPI_SA1, ''0));
```
CoDec only Reception

alt

//Receive the correct answer
[] Link1.receive(ICMPv6WithESP_EchoReply_AuthNULL

(SPI_SA2, ’’0))

{ setverdict(pass);
 replyTimer.stop; }

//Receive incorrect answer
[] Link1.receive

{ setverdict(fail);
 replyTimer.stop; }

//Receive no answer
[] replyTimer.timeout

{ setverdict(fail); }
CoDec only Reception

alt

//Receive the correct answer
[] Link1.receive(ICMPv6WithESP_EchoReply_AuthNULL (SPI_SA2, ''0))
 { setverdict(pass);
 replyTimer.stop; }

//Receive incorrect answer
[] Link1.receive
 { setverdict(fail);
 replyTimer.stop; }

//Receive no answer
[] replyTimer.timeout
 { setverdict(fail); }
CoDec only Reception

alt
 //Receive the correct answer
 [] Link1.receive(ICMPv6WithESP_EchoReply_AuthNULL (SPI_SA2, ''0))
 { setverdict(pass);
 replyTimer.stop; }

 //Receive incorrect answer
 [] Link1.receive
 { setverdict(fail);
 replyTimer.stop; }

 //Receive no answer
 [] replyTimer.timeout
 { setverdict(fail); }
CoDec+Ext Transmission

```plaintext
template ESPMessage ICMPv6ESPMessage (IPv6AddressType src,
IPv6AddressType dst, octetstring m_spi,
octetstring m_data, UInt16 checksum) := {

SPI:= m_spi,
SeqNum := 1,
Payload := EncryptPayload(src, dst, EchoRequestType,
    m_data, checksum),
ICV := omit
}
```
CoDec+Ext Reception

```tcl
alt{
    // Receive correct answer, unverified encrypted payload
    [] Link1.receive(ICMPv6ESPMessage_Answer_AuthNULL
        (PF0_1, PF1_1, SPI_SA2, DATA, checksum)) -> value Myvar {
        var bitstring encpayload := Myvar.Payload;
        var UInt8 payloadLength := lengthof(encpayload)/8;
        var EncPayload payload := DecryptPayload(encpayload, payloadLength);
        if (match(payload, ICMPv6EncPayload_Answer(PF0_1, PF1_1, DATA))) {
            setverdict(pass);
        } else {
            setverdict(fail);
        }
        replyTimer.stop;
    }
    // Receive incorrect answer
    [] Link1.receive {
        setverdict(fail);
        replyTimer.stop;
    }
    // Receive no answer
    [] replyTimer.timeout {
        setverdict(fail);
    }
}
```

Ariel Sabiguero, María Eugenia Corti, César Viho

The new Internet Protocol securityIPsec testing with TTCN-3
CoDec+Ext Reception

alt{
 //Receive correct answer, unverified encrypted payload
 [] Link1.receive(ICMPv6ESPMessage_Answer_AuthNULL
 (PF0_1, PF1_1, SPI_SA2, DATA, checksum)) -> value Myvar {
 var bitstring encpayload := Myvar.Payload;
 var UInt8 payloadLength := lengthof(encpayload)/8;
 var EncPayload payload := DecryptPayload(encpayload, payloadLength);
 if (match(payload, ICMPv6EncPayload_Answer(PF0_1, PF1_1, DATA))) {
 setverdict(pass);
 } else {
 setverdict(fail);
 }
 replyTimer.stop;
 }
 //Receive incorrect answer
 [] Link1.receive {
 setverdict(fail);
 replyTimer.stop;
 }
 //Receive no answer
 [] replyTimer.timeout {
 setverdict(fail);
 }
}
CoDec+Ext Reception

alt{

 //Receive correct answer, unverified encrypted payload
 [] Link1.receive(ICMPv6ESPMessage_Answer_AuthNULL
 (PF0_1, PF1_1, SPI_SA2, DATA, checksum)) -> value Myvar {
 var bitstring encpayload := Myvar.Payload;
 var UInt8 payloadLength := lengthof(encpayload)/8;
 var EncPayload payload := DeciptPayload(encpayload, payloadLength);
 if (match(payload, ICMPv6EncPayload_Answer(PF0_1, PF1_1, DATA))) {
 setverdict(pass);
 } else {
 setverdict(fail);
 }
 replyTimer.stop;
 }

 //Receive incorrect answer
 [] Link1.receive {
 setverdict(fail);
 replyTimer.stop;
 }

 //Receive no answer
 [] replyTimer.timeout {
 setverdict(fail);
 }

}
Message transmission & reception

CoDec
- High ATS abstraction (too much?)

External Functions

Ariel Sabiguero, María Eugenia Corti, César Viho
The new Internet Protocol security IPsec testing with TTCN-3
Message transmission & reception

CoDec
- High ATS abstraction (too much?)

External Functions
- More control from ATS
Message transmission & reception

CoDec

- High ATS abstraction (too much?)
- Increased CoDec complexity

External Functions

- More control from ATS
Message transmission & reception

CoDec
- High ATS abstraction (too much?)
- Increased CoDec complexity

External Functions
- More control from ATS
- CoDec just encode and decode

Ariel Sabiguero, María Eugenia Corti, César Viho
The new Internet Protocol security (IPsec) testing with TTCN-3
Message transmission & reception

CoDec

- High ATS abstraction (too much?)
- Increased CoDec complexity
- Difficult code factorization and reuse

External Functions

- More control from ATS
- CoDec just encode and decode
Message transmission & reception

CoDec
- High ATS abstraction (too much?)
- Increased CoDec complexity
- Difficult code factorization and reuse

External Functions
- More control from ATS
- CoDec just encode and decode
- Software engineering techniques applicable
loc based metrics
Every time an external function is invoked, encode and decode operations on the CoDec are invoked.
Performance

- Every time an external function is invoked, encode and decode operations on the CoDec are invoked.
- External functions based approach requires 4 external function invocations.
Performance

- Every time an external function is invoked, encode and decode operations on the CoDec are invoked.
- External functions based approach requires 4 external function invocations.
- Not relevant in conformance or interoperability testing, but might be critical for other test paradigms.
Final remarks

- Ongoing research for more thorough analysis
- Both methodologies are valid and applicable, with consistent results
- Excessively complex CoDec development diverges from TTCN-3 philosophy
- When performance degradation is allowed, external functions provide better code properties and a cleaner solution
Final remarks

- Ongoing research for more thorough analysis
- Both methodologies are valid and applicable, with consistent results
- Excessively complex CoDec development diverges from TTCN-3 philosophy
- When performance degradation is allowed, external functions provide better code properties and a cleaner solution
Final remarks

- Ongoing research for more thorough analysis
- Both methodologies are valid and applicable, with consistent results
- Excessively complex CoDec development diverges from TTCN-3 philosophy
- When performance degradation is allowed, external functions provide better code properties and a cleaner solution
Final remarks

- Ongoing research for more thorough analysis
- Both methodologies are valid and applicable, with consistent results
- Excessively complex CoDec development diverges from TTCN-3 philosophy
- When performance degradation is allowed, external functions provide better code properties and a cleaner solution
Thank you for your time

Questions?