World Class Standards

LTE test suites for UE conformance

TTCN-3 User Conference 2009
3 - 5 June 2009, ETSI, Sophia Antipolis, France

ETSI - MCC TF 160
Hellen Griffiths
Shicheng Hu
Wolfgang Seka

Session 1: June 4th 11:15
- MCC TF160 – 3GPP LTE/SAE UE Conformance Test
- UE Conformance Testing: Test Suite Design
- Coding Style and Template Restrictions
- Conclusions
What is 3GPP?

- A collaborative standardization activity between:
 - ARIB (Japan-radio)
 - ATIS (North America)
 - CCSA (Peoples Republic of China)
 - ETSI (Europe)
 - TTA (Republic of Korea)
 - TTC (Japan-core network)

- Founded in December 1998

- Prepares complete sets of specifications for mobile radio systems; GSM, GPRS, EDGE, W-CDMA, HSPA, LTE and LTE-Advanced
3GPP Family Evolution

Standards availability

- **EDGE**
 - 384Kb/s

- **EDGE+**
 - 1Mb/s

- **UMTS**
 - 384Kb/s

- **HSPA**
 - 18Mb/s

- **HSPA+**
 - 42Mb/s

- **LTE**
 - 100Mb/s

- **LTE-Advanced**
 - 1000Mb/s

Timeline:
- 2000
- 2009
MCC TF160 - General

- **Task Force** – Mobile Competence Centre: Project Group at ETSI
 - Pool of TTCN expertise used by 3GPP

- **3GPP: 3rd Generation Partnership Project** http://www.3gpp.org
 - Telecommunication Standardisation Bodies
 - TSG RAN: Radio Access Network
 - WG RAN5: Mobile terminal conformance testing

- **Conformance Tests**
 - Specification (Prose): RAN5
 - Implementation (TTCN): MCC TF160
 - Validation: Test Industry

- **MCC TF160:** Signalling Conformance Tests for 3GPP (RAN5: Testing)
 - Task: Develop Conformance Test Suites for UE world-wide certification
 - since 2000: Conformance Tests for UMTS Signalling (TTCN-2)
 - since 2006: Conformance Tests for IMS (TTCN-3)
 - 2007..2008: Pre-evaluation of TTCN-3 for LTE Signalling
 - 2008..now: 3GPP LTE/SAE UE Conformance Test
MCC TF160 – LTE/SAE Project (1)

- **Size:** 18 experts all over the world
- **Duration:** more than 5 years
- **Test cases:** ~ 100 implemented; 450 planned
- **Code size:**
 - Modules: more than 90 (more than 120 expected)
 - 60 000 lines of code (TTCN-3)
 - 250 000 words
 - 2 800 000 bytes
 - Type Definitions: 15 TTCN-3 modules, 3 ASN.1 modules
 - 12 000 lines of code (TTCN-3)
 - 26 000 lines of code (ASN.1)
- **Tools:**
 - 6 different compilers (all available at ETSI)
 - quality checks (naming conventions, template restrictions etc.)
 - code generation (top-level test case definitions, parameters, etc.)
MCC TF160 – LTE/SAE Project (2)

- General Requirements and Challenges
 - Ensuring all test equipment has similar behaviour at any time
 - Different data types: TTCN-3, ASN.1, XML …
 - Test suite life cycle > 8 years
 - Backward compatibility and extendibility towards LTE- Advanced
 - Continuous maintenance and deliveries (every 3 – 4 weeks)
 - Verification and Validation of the test suite

- Technical Requirements
 - Real-time behaviour
 - Test Model
 - Control and Configuration of Test Equipment
 - Agreed by 3GPP (TS 36.523-3)
MCC TF160 – LTE/SAE Project (3)

- **Quality Requirements**
 - Tool-independent implementation
 - Delivered TTCN-3 test cases can only be verified by 3GPP test industry
 - Runtime Errors very costly
 - Change Request Process

- **Readability**
 - Code needs to be readable by 3GPP test industry, not only test case writers

- **Impact on Implementation**
 - Tools for Quality Assurance (e.g. to avoid runtime errors)
 - Change Request necessary for Changes in approved Objects (even on Name Changes)
MCC TF160 – Cooperation with other ETSI Projects

- STF343 – TTCN-3 Tool Assurance
 - Test Suite for Tool Compatibility based on MCC TF160’s Pre-evaluation Result

- STF349/380 - TTCN-3 extension and maintenance
 - Input for clarifications on TCCN-3 core spec.
 - Handling of local timers ("any timer.timeout", "all timer.stop")
 - Template restrictions
 - encvalue/decvalue functions
 - Pre-processing macros
 - etc.

- Quality Assurance for TTCN-3 Test Specifications
 (ETSI, University of Göttingen)
 - Usage of the Tool
 - Feedback
 - Additional Requirements

- Knowledge Exchange and Support with other ETSI Projects and Groups
 - WiMax Test Project
 - MTS (ETSI Body: Methods for Testing & Specification)
MCC TF160 – 3GPP LTE/SAE UE Conformance Test

UE Conformance Testing: Test Suite Design

Coding Style and Template Restrictions

Conclusions
World Class Standards

Test Suite Design: UE Conformance Testing

- **ASPs**: Layer-to-Layer (acc. to the test model)
 - Control ASPs: Configuration and Control of the Test Equipment
 - Data ASPs: Carrying PDUs and Control Information (Timing, Routing, ...)

- **PDUs**: Peer-to-Peer (acc. to the protocol standards)
Test Suite Design: Design Considerations

- **Timers**
 - only local timers are used

- **Global Variables**
 - grouped into component specific structures
 - Accessed by wrapper functions ("set", "get")

- **Verdict Assignment**
 - Immediate test case termination after FAIL or INCONC

- **Test Cases**
 - Top-level test case definition generated by Tools

- **Modular Structure**
 - Separation of components into different Radio Access Technologies (these use different type definitions)
 - Common Modules + Test case specific modules
World Class Standards

PTC Model

- **MTC**
 - Control of PTCs
 - Upper Tester (AT/MMI interface to UE)

- **PTCs**:
 - per Radio Access Technology
 - LTE-only
 - LTE + UMTS
 - LTE + GSM/GPRS
 - etc.

- **L3-PDU Handler**
 - coding and encryption
 - no verdict assignment etc.

- **UE Control**: AT/MMI Commands
 - Routed through MTC
 - Only one System Port

- **Coordination ASPs**
 - PTC to PTC
 - InterRAT Handover

- **TTCN-3 Component Control**
 - TTCN-3 Build-in Mechanism
 - (Create, Start, Kill, Done, Killed, etc.)
MCC TF160 – 3GPP LTE/SAE UE Conformance Test

UE Conformance Testing: Test Suite Design

Coding Style and Template Restrictions

Conclusions
Coding Style

- **Project specific Naming Conventions**
 - ETSI Generic Naming Conventions
 - Project Specific Requirements
 - 3GPP LTE/SAE UE Conformance Test Suite Specific Naming Conventions

- **Different Approaches for Templates**
 1. Classification into Templates with and without Matching Pattern
 - Templates with matching pattern shall be used in receive statements only
 - Templates without matching pattern may be used in receive or send statements
 2. Classification into Templates for Sending and for Receiving
 - Templates for sending are exclusively used in send statements
 - Templates for receiving are exclusively used in receive statements
 - MCC TF160 applies 2nd Approach

- **Project Specific Conventions for LTE/SAE Conformance Tests**
 - Same prefixes as for templates in TTCN-2
 - same people are working on/with TTCN-2 and TTCN-3 test cases
 - Templates distinguished for Sending and Receiving
 - Simple checks for template parameters (see next slides)
 - Improved quality check capabilities for template restrictions

→ http://www.ttcn-3.org/NamingConventions.htm
Naming Conventions: Example "Baseline Moving"

- **Old Type Definition**

  ```
  cr_Message := {
    field1 := value1,
    field2 := value2
  }
  
  ⇒ the template does not contain matching pattern
  ```

- **Extended Type Definition**

  ```
  cr_Message := {
    field1 := value1,
    field2 := value2,
    newField := * // any-or-omit for backward compatibility }
  
  ⇒ now the template contains matching pattern
  ```

⇒ Classification into send and receive templates does not cause problems with baseline moving
Template Restrictions (Release 3.4.1)

- **Motivation**
 - Runtime errors may be caused by matching pattern used
 - in send statements
 - as parameters of "valueof"
 - Due to parameterisation of templates compiler cannot find all of these errors

- **Rules**
 - **Send Templates**
 - Prefix: cs_, cas_, cds_, etc. (acc. to naming conventions)
 - Template itself: "template (value)"
 - Template Parameters: "template (omit)" (optional field)
 - Template Parameters: "template (value)" (mandatory field)
 - **Receive Templates**
 - Prefix: cr_, car_, cdr_, etc. (acc. to naming conventions)
 - Template itself (no restriction)
 - Template parameters: "template" (optional field)
 - Template parameters: "template (present)" (mandatory field)

- **Checks**
 - Rules can be checked by appropriate tool ("restrictions fitting to prefix")
 - Correct parameterisation can be checked by compilers
 (parameter handed over shall follow restriction of formal parameter)

⇒ Template Restrictions + Naming Conventions = Better Quality
Template Restrictions: Examples

Correct Implementation

\[
\text{template (value) PDU_Type cs_SendTemplate(}
\begin{array}{l}
\text{integer p_Value,} \\
\text{template (value) IE1_Type p_Mandatory,} \\
\text{template (omit) IE1_Type p_Optional)}
\end{array}
\]

\[:= \{ \ldots \} \]

Wrong Implementation

\[
\text{template PDU_Type cs_SendTemplate(}
\begin{array}{l}
\text{integer p_Value,} \\
\text{template (value) IE1_Type p_Mandatory,} \\
\text{template (omit) IE1_Type p_Optional)}
\end{array}
\]

\[:= \{ \ldots \} \quad // \text{missing restriction for template}\]

\[
\text{template (value) PDU_Type cs_SendTemplate(}
\begin{array}{l}
\text{integer p_Value,} \\
\text{template (present) IE1_Type p_Mandatory,} \\
\text{template IE1_Type p_Optional)}
\end{array}
\]

\[:= \{ \ldots \} \quad // \text{missing or wrong restrictions for parameters}\]
MCC TF160 – 3GPP LTE/SAE UE Conformance Test

UE Conformance Testing: Test Suite Design

Coding Style and Template Restrictions

Conclusions
Conclusions

- 3GPP conformance testing moved from TTCN-2 to TTCN-3 for LTE

- The LTE test suite
 - Aims to be tool independent
 - Is visible to the whole of 3GPP
 - Has a long project lifespan
 - Is extendable (LTE \(\Rightarrow\) LTE-Advanced \(\Rightarrow\) ???)

- MCC TF160 gives feedback to and receives support from
 - TTCN-3 Standardisation Group
 - TTCN-3 Quality Check Projects
 - TTCN-3 Tool Vendors

- MCC TF160 wants to encourage the close co-operation with the above parties to continue to improve the quality of TTCN-3.