Automated Interoperability Testing with TTCN-3

Experiences from ETSI’s STF 370 project

TTCN-3 User Conference Asia
November 18th 2009
Bangalore, IN

Stephan Schulz
Theofanis Vassiliou-Gioles
© ETSI 2009. All rights reserved
Outline

- Why is interoperability testing of interest to ETSI?
- How can we make interoperability testing for effective?
- About the ETSI STF 370 project
- A methodology for automated interoperability testing
- Interoperability testing with TTCN-3
 - About the IMS case study
 - About TTCN-3 IMS IOT test system design
 - Findings & Statistics from the 3rd ETSI IMS Plugtest
- Conclusion
Rise of Interoperability Testing

- Classical conformance testing may not be appropriate for every technology
 - Can be costly to develop
 - Does not guarantee interoperability of tested products

- Bi-lateral testing and interoperability events are increasingly accepted as a solution to improve interoperability
 - ETSI - interoperability test specifications & Plugtests™ for a wide range of technologies including IMS, HDMI, IP, VoIP, RFID, grid, etc
 - OMA - interoperability test specifications & testfests for enablers
 - WiMax - network infrastructure interoperability testbed
 - Over 700,000 hits with Google, more than 1,3 million hits with Yahoo

- BUT: (pure) interoperability testing does not answer all questions
 - Does not guarantee that products follow standards
 - Interoperability is not transitive relation and may be elusive!
Interoperability Testing: the ETSI approach

- Integrate conformance checking with interoperability testing!
 - In practice achieved by recording traces at standardized interfaces during each interoperability test

- Get the best of both worlds
 - Vendors get instant feedback about the interoperability of their product with others
 - ETSI gets an idea about the conformance of products to standards

- Requires additional test specification development work, i.e., identification and association of conformance checks

- Does not replace need for conformance testing
 - Inherent limitation in IOT to expose all standardized behavior
Interoperability Testing Today

- Interoperability testing means different things to different people
 - Attend an event
 - Test whatever with whoever whenever you want (ad-hoc)
 - Scheduled test sessions (attempting to cover all possible pairings of different participating products)
 - Execution of agreed test list in each test session
 - Validation of execution traces against standards
 - As well as various combinations of the above

- Majority of interoperability testing and validation is performed manually
 - Labor intensive
 - Does not scale
 - Error prone
 - Frequently inconsistent
Example: Test Effort for ETSI’s 1st IMS Plugtest

- **Background**
 - A 4 day interoperability event intended to assess the interoperability of IMS core networks at network-to-network (NNI) interface
 - 23 different interoperability tests
 - 6 IMS core network implementations tested all against each other
 - 30 recorded test sessions (A -> B as well as B -> A)
 - 482 test execution traces to be evaluated (SIP message flows)

- **Effort spent on test execution & analysis**
 - About 180 h of interoperability testing (46%)
 - About 204 h of manual analysis of execution traces (54%)
 - With a lot of work being done after 9pm each day …
 - Sums up to total effort of 384 h / 48pd (100%) related to testing!
How can we make IOT more effective?

- **Automate** IOT as much as possible
 - Example: Automate interoperability trace checking
- Reduce cost and time
- Increase consistency of results
- Reuse constructs from existing test frameworks
 - Profit from investments already made
- Use industrial grade test automation tools
 - Benefit from well accepted processes, workflows and tools

Use TTCN-3 as the unifying test language to drive automated interoperability testing!
STF 370 – Automating interoperability testing

- ETSI Project funded by European Commission and ETSI
 - Objective is to extend existing ETSI interoperability testing concepts with automation and in context of distributed systems

- Main stakeholders
 - ETSI TC Methods for Testing and
 - ETSI TC IMS Network Testing
 - ETSI TC Grid
 - B2B community (mainly around HL7)
 - TETRA Association
 - WiMax Forum (NWIIOT)

- Further signalled interest
 - IPv6 community
 - ITS community
 - Testing labs
Project Overview

- Planned duration Jan 2009 to Jun 2010
- Involves 12 experts with various background led by ETSI CTI
- Methodology and Framework for automated IOT
 - Output is ETSI Guide 202 810 (independent of TTCN-3)
- IMS case study based on use of TTCN-3
 - Application of automated IOT concepts in context of IMS
 - Basis was IMS IOP test specification for 3rd ETSI IMS Plugtest
 - Output is TTCN-3 test suite & documentation, TCI SIP codec & TRI adapter implementation, and report on IMS Plugtest experience
 - Validation of TTCN-3 test system and IOT concepts at IMS Plugtest!
- Dissemination
 - White paper & training material (in 2010)
 - Presentation to TETRA Forum and at T3UC 2009 + T3UC Asia 2009
About automated IOT methodology & framework

- Analysis of automated IOT in various contexts
 - IOT in IMS, WiMax, IPv6, HL7, ROHC, IPTV, WiMedia, SIP VoIP, etc
- Methodology extends ETSI’s generic approach to IOT (EG 202 237)
 - Adds aspects of automation and test system implementation
- Main points captured in this document (EG 202 810)
 - Independent of technology to be tested
 - Independent of testing language
 - Collection of key terminology
 - Separation of verdicts for end-to-end and conformance assessment
 - Discussion of limitations and feasible degree of automation
 - Controllability of Equipment Under Test (EUT) interfaces
 - Definition of generic means of interoperability testing
 - Definition of process for IOT test system development
Generic Automated IOT Test Architecture

Means of Interoperability Testing

- Test Oracle
- Test Coordinator
- Application Support Nodes
- Interface Monitor
- Equipment User
- Interconnecting Network
- SUT
- EUT 1
- EUT 2
- EUT N

- Configuration interface
- Stimulating interface
- Monitoring interface
About TTCN-3 based IMS case study

- Designed and implemented a TTCN-3 based framework for IMS interoperability testing
 - Library based design
 - LibCommon, LibIot, LibSip, LibIms, LibUpperTester plus AtsImslot
 - Separation of individual EUT information and EUT pairings
 - Support for en/disabling of interface checks upon need
 - Separation of conformance and interoperability verdict management
 - Support for live vs. offline interoperability test execution
 - Reuse of TTCN-3 SIP/SDP constructs from conformance test suites

- Implemented 50 IMS IOT TTCN-3 tests within framework
 - Development lead to discovery of a number of issues in the IMS IOP test specification (mainly related to conformance checks)
 - Included some basic test validation
About TTCN-3 based IMS case study (contd.)

- Implemented TCI SIP and SDP codecs
 - Based on open source IRISA t3dev codec C++ development kit
 - Excludes checking of XML message bodies
 - Includes codec test framework
 - Reusable beyond interoperability testing!

- Implemented TRI Upper tester and PCAP test adapter
 - Based on open source IRISA t3dev codec C++ development kit
 - Protocol independent, extensible design including test adapter configuration protocol
 - Also adapted Testing Tech Trace Player adapter to new interface

- TTCN-3 test system mainly validated at IMS Plugtest
 - Used two different commercial TTCN-3 compilers: Testing Tech TTWB and Elvior MM
Findings & Statistics from the IMS Plugtest

- 3 test engineers were validating tests and checking 317 interoperability test executions from 54 test sessions
 - Included voluntary contributions from Testing Tech and Elvior
- A number of design decisions proved very helpful to speed up test execution
 - Example: Separation of EUT information, template design, etc
 - Significant improvement over first TTCN-3 tool from 2nd IMS Plugtest
- After test validation analysis achieved speed of 5 test sessions per day per test engineer
 - Includes manual verification of all fail verdicts!
 - Total effort: 3*8*4 = 96 h(!) – compared to 204 h manual work!
- Code really worked with different TTCN-3 tools!
 - Collected feedback on further TTCN-3 tool improvements to even further speed up trace analysis
Mismatches in Practice (TTWB)
Conclusions

- Interoperability testing is an accepted way to reduce interoperability problems
- Manual interoperability testing is time consuming and error prone and therefore expensive
- Automation of interoperability trace checking can reduce costs by more than 50% compared to manual validation
 - Standardized test methodology
 - Reusable TTCN-3 test framework
 - Off-the-shelf TTCN compilers
- Standards, tools, and people are available today
Road Ahead

- Finalization of methodology, TTCN-3 based IMS Architecture, Plugtest experience report for ETSI publication
 - Will include also TTCN-3 code
- Start of work on training material and white paper
 - Expected to be finished latest by summer 2009
- SIP & SDP codecs, IOT adapter, and corresponding design documents are planned to be made available via open source project
- Target for next IMS Plugtest automatic execution of interoperability tests
 - Augment a commercial IMS client to be controllable via TTCN-3
THANK YOU!

Questions?