
Presented by: For:

© ETSI 2020

TTCN-3 Language Extensions
Object-Oriented Features

(ETSI ES 203 790)

Axel Rennoch, Jens Grabowski, 
György Réthy, Kristóf Szabados, 
Tomas Urban, Jacob Wieland, 
Philip Makedonski

TTCN-3 Webinar

09.10.2020



© ETSI 2020 2

Agenda

Motivation and ideas

Added value of OO for TTCN-3

General introduction on OO

Differences against OO programming languages

Details on TTCN-3 OO languages features

Definition of class types using methods and fields

Exception handling

Agenda



© ETSI 2020

Object 
Orientation: 

Motivation 
and ideas



© ETSI 2020 4

Object Orientation: Motivation and added value

Heighten appeal of TTCN-3 to users used to object-oriented programming

Use advantages of object-oriented modelling

Reduce TTCN-3 emulation of object-oriented features

Allow simple access to external objects

Handling of larger and more complex tests (hiding of „local“ details)

Data and functions operating on it are kept together

Providing support for fine-grainded information hiding

More attractive for OO software developers



© ETSI 2020 5

General introduction to OO programming

Concept of objects which can contain data (fields: attributes or properties) and 
behaviour (procedures: methods)

Object‘s procedures can access and often modify the data fields of the objects („this“ 
or „self“)

OO programs are designed out of objects that interact with each other

Most OOP languages are class-based, i.e. objects are instances of classes (their „types“)

Source: Wikipedia



© ETSI 2020 6

Differences against common OO programming languages

Methods can be overridden, but not overloaded. Private members can not be 
overridden.

 Less confusion

Fields can not be public

 Local data responsibility

No multiple or interface inheritance (so far)

 Avoid usual problems with multiple inheritance and name-clashes

No static members

 TTCN-3 does not allow global variables

 Instead of static functions, global functions can be used



© ETSI 2020 7

Differences against common OO programming languages –
New Features

Objects are owned by the component creating them. Methods can only be called by 
behaviour running on the owning component.

 No data racing conditions

Classes can have runs on, mtc and system clauses, restricting test system context and 
usage of classes

 No repetition of clauses for methods

 Statically checkable safe access to test system environment

External classes

 Simple access to external objects

Implicit constructor 

 Less boilerplate code



© ETSI 2020

Definition of 
class types



© ETSI 2020 9

Simple class definition

A class defines a new TTCN-3 type, containing one or more members:

Fields: var, const, template, port, timer

Methods: function, constructor (create)

type class Person {
//fields
var charstring v_name;

//methods
function f_nameLog() {log(v_name);…};
create() {this.v_name := "noname";}
}

reference a member of 
own object (class)



© ETSI 2020 10

Objects of classes (1)

An object is an instance (i.e. a value) of a class, 

comprising a data instance of each field of the class,

created after invocation of the constructor of the class

can be created in a behavior running on a TTCN-3 component (the owner of the object)

type class Person {
var charstring v_name;
function f_nameLog() {log(v_name);…};
create() {this.v_name := "noname";}
}



© ETSI 2020 11

Objects of classes (2)

Implicit constructor (not required to be specified):

An object reference is contained in a variable of a class type.

Creation and use of the object

type class Person {
var charstring v_name;
function f_nameLog() {log(v_name);…};
}

create (charstring v_name) {this.v_name := v_name;}

var Person v_chair := Person.create("Anthony");
v_chair.f_nameLog()

output is: Anthony



© ETSI 2020 12

Inheritance of classes

A class definition inherits all declarations from its super class

type class Person {
var charstring v_name;
function f_nameLog() {log(v_name);…};
}

type class EtsiPerson extends Person {
var charstring v_position;
}

superclass
of EtsiPerson

subclass
of Person



© ETSI 2020 13

Visibility of members

Fields are private or protected (default is protected)

and can not be overwritten

private and protected members can not be accessed outside their class

type class Person {
var charstring v_name;
function f_nameLog(charstring p_c) {log(v_name);…};
}

type class EtsiPerson extends Person {
var charstring v_position;
public function f_nameLog(charstring p_c) {log(v_name & p_c);…};
}

var EtsiPerson v_chair := EtsiPerson.create("Anthony", "Chair");
v_chair.f_nameLog("56");
log(v_chair.v_name);

field is
„protected“!

field is
„protected“!

output is: 

Anthony56
ERROR: no access 

to fields



© ETSI 2020 14

Visibility of members (cont.)

Methods are private, protected or public (default is protected)

Public member functions can only be overwritten by public member functions 
and can be called from any behavior on the object’s owner component 

type class Person {
var charstring v_name := "Anthony";
function f_nameLog(charstring p_c) {log(v_name);…};
}

type class NewPerson extends Person {
function f_nameLog(charstring p_c) {log(v_name & p_c);…};
public function f_superLog() {super.f_nameLog("Alex");};
}

var EtsiPerson v_chair := NewPerson.create;
v_chair.f_superLog();

method is
„protected“!

output is: Anthony



© ETSI 2020 15

Component type restrictions

runs on, system, mtc clauses restrict the component context that can create objects of 
that class and call methods of the class (if missing, inherited from superclass) and shall 
be compatible with superclass clauses

function members inherit restrictions from the containing class 
(no own runs on, system, mts clauses)

type component MyComponent {
port myport MyPortType;…
}

type class Person runs on MyComponent system MySUT mtc MyTester {
var charstring v_name;
function f_nameLog() {myport.receive;…};
}



© ETSI 2020 16

Object reference and class casting

To access an object instance an object reference is needed.

The object is not copied when used as an actual parameter or assigned to a variable 
(only the reference). 

Multiple variables can contain a reference to the same object simultaneously.

Objects cannot be shared by multiple components.

Object references can be cast to another class

New class shall be within the set of (direct or indirect) superclass or subclass

var Person v_person := EtsiPerson.create("Anthony"); 
var EtsiPerson v_etsichair := v_person => EtsiPerson;

Identical objects
two references for
the one object



© ETSI 2020 17

Class type discrimination

of-operator checks if most specific class of the object (left-hand side) is equal or 
subclass derived from the class type (right-hand side)

select class-statement discriminates the class of an object 
(allows superclasses and subclasses of the object)

testcase TC_1() {…
var MyClass v_a := MyClass.create;
var MyClass v_b := MyClassB.create;
if (v_a of MyClass) {…};
select class (v_b) {

case(MyClassB) {…}
case(MyClassA) {…}

}}

type class MyClass {…}
type class MyClassB extends MyClass {…}

will be chosen

will not be chosen



© ETSI 2020 18

Outlook – Additional Features

External classes and methods

Abstract classes and methods, final classes

Already in the last standard version (2020):

Nested classes

Generic classes and methods

Mixed classes (External classes with internal additional behaviour/state)

Next standard version (2021):

Interfaces and multiple interface inheritance (similar to Java)

Properties (similar to C#)

Additional Ideas Welcome!
ADD SECTION NAME



© ETSI 2020

Application
example



© ETSI 2020 20

Application example

Application background: 

oneM2M common service/application elements (CSE/AE)

sample use cases

Specification of semantic descriptor (TTCN-3)

class type instead of record type

sample application (extended class)



© ETSI 2020 21

Application background

oneM2M common service/application elements (CSE/AE)

Addition of semantics annotations: 
to discover dedicated AE‘s (e.g. sensors), based on their location (e.g. area) or kind (e.g. 
temperature) etc.

Possible scenarios: 

creation of AE representation at CSE (e.g. container, contentInstance), 
e.g. temperature sensors

addition of semantic descriptors to AE representation, by other AE (e.g. dashboard)

semantic discovery, requested by other AE (e.g. mobile handheld)



© ETSI 2020 22

Semantic annotation 

temp

AE-1 AE-2

AE: Application Entity
CSE: Common Services Entity

AE-1

container

CSEBase

contentInstance1
Content: 32

CSE

AE registration and 
container creation

32

A reading

Source: oneM2M.org



© ETSI 2020 23

SemanticDescriptor in oneM2M

type record SemanticDescriptor {
ResourceName resourceName,
ResourceType resourceType,
XSD.ID resourceID,
NhURI parentID,
Timestamp creationTime,
Timestamp lastModifiedTime,
Labels labels optional,
AcpType accessControlPolicyIDs optional,
Timestamp expirationTime,
…

}

Currently (for historical reasons) using 
record type for SemanticDescriptor

For the sake of simplicity the example 
leaves out some fields

Note: related behavior (such as field 
set/get functions) is defined separately



© ETSI 2020 24

SemanticDescriptor using class type

type class SemanticDescriptor {
var ResourceName resourceName;
var ResourceType resourceType;
var XSD.ID resourceID;
var NhURI parentID;
var Timestamp creationTime;
var Timestamp lastModifiedTime;
var Labels labels;
var AcpType accessControlPolicyIDs;
var Timestamp expirationTime;
…

}

Introduction of class type for 
SemanticDescriptor

Additional class fields can be provided 
if using class inheritance



© ETSI 2020 25

OO application example

Extension of SemanticDescriptor for simplified handling of context-
related details

Example:
TemperatureSemanticDescriptor extends SemanticDescriptor

Add context information, e.g. temperature types (C/F), usage (indoor/outdoor), 
manufacture information (country, price etc.), temperature ranges (-30…40), 
defaults/standards

Add related functionality (translation formula, exchange rates):
f_compatibility, f_translate



© ETSI 2020 26

OO types - example

type class TemperatureSemanticDescriptor extends SemanticDescriptor {
var charstring MeasurementUnit;
var charstring Usage;
var integer LowerLimit;
var integer UpperLimit;
function f_compatibility(…) return boolean;
function f_translate(…);
create (charstring p_mu, charstring p_u, integer p_ll, integer p_ul):

SemanticDescriptor(…) 
{this.MeasurementUnit:= p_mu, this.Usage:= p_u, 
this.LowerLimit:= p_ll, this.UpperLimit:= p_ul,};}

var TemperatureSemanticDescriptor v_tSensorEU :=
TemperatureSemanticDescriptor.create("celsius", "outdoor", -30, 40);

var TemperatureSemanticDescriptor v_tSensorUS :=
TemperatureSemanticDescriptor.create("fahrenheit", "indoor", 32, 104);

between different 
measurement units

analyse
compatibility (e.g. 

value range) 

ONLY temperature
related fields

ONLY temperature
related fields

ONLY temperature
related fields

ONLY temperature
related fields



© ETSI 2020

Exception 
handling



© ETSI 2020 28

Exception handling

Exception type lists: 
functions, external functions, altsteps

raise exception statements

“catch” and “finally” clauses: 
statement blocks, altsteps and testcase



© ETSI 2020 29

raise Exception statement

Causes leaving of: statement block, loop, alt, interleave

within the encompassing function/altstep/testcase

(1) Execution continues in the catch-block
If encompassing function/altstep/testcase has catch-block (with same type, or can be cast)

(2) Execution leaves function/altstep/testcase
If NO catch block available or can handle the raised exception

➢ Handle the exception in the calling function/altstep/testcase

Dynamic error, if exception not handled at the latest catch clause of the testcase 
statement block



© ETSI 2020 30

Exception handling samples

(1) execution continues in catch-block

(2) execution continues outside

function f_myf1() exception (integer) {…
raise integer:1;

} catch (integer p_i) {…}

function f_myf1() exception (integer) {…
raise integer:1;

}

Do something!



© ETSI 2020 31

Exception handling – application example

Simplification of post processing in case of error handling

E.g. resource creation and/or resource releases

Initialization scenario based on sub-processes for registration and request message



© ETSI 2020 32

Exception handling – application example

catch (charstring p_c) 
{log("Initialization failed: ", p_c); setverdict(inconc)…}

catch (integer p_i) 
{log("Creation failed with return code: ", p_i); setverdict(fail);…}

function f_create(in charstring p_name) exception (charstring, integer) 
runs on myComponent

{var integer v_rc:=-1;
...
if (not fx_register(p_name)) { 

raise ("Could not register" & p_name); } 
…
if (not f_sendRequest(p_name, v_rc)) { 

raise (v_rc+1000); } 
…}

match 2nd catch

match 1st catch



© ETSI 2020

Conclusions



© ETSI 2020 34

Key takeaways

Enhancements for TTCN-3 programmers

Attraction of new users

Ongoing maintenance and improvements by ETSI TTF



© ETSI 2020 35

Q&A

For further information please visit www.ttcn-3.org

and/or contact ETSI TC MTS via www.etsi.org/MTS.

Team: https://portal.etsi.org/STF/STFs/STF-HomePages/T003

Community: http://www.ttcn-3.org/index.php/community/contact

Suggestions: http://www.ttcn-3.org/index.php/community/change-requests

http://www.ttcn-3.org/
http://www.etsi.org/MTS
https://portal.etsi.org/STF/STFs/STF-HomePages/T003
http://www.ttcn-3.org/index.php/community/contact
http://www.ttcn-3.org/index.php/community/change-requests


© ETSI 2020 36

Short summary on TTCN-3 in general (Webinar part 1)

Abstract test definition language

Used in multiple industrial domains

One testing technology for all testing types:
functional (conformance, functions) and non-functional (performance, security, vulnerability)

Long history in standardization (ISO, ITU-T and ETSI)

Independent from programming languages

Includes testing specific features

Mappings to Java, C++, C#

Extensibility via attributes, external functions etc.

Integration with different languages like JSON, XML, ASN.1, IDL

Earlier versions were lacking modern OO features

http://www.ttcn-3.org/index.php/about/references/applicatio-domains


© ETSI 2020 37

Test component and port concepts of TTCN-3

Test components are independent entities

Each one is running a piece of the whole test case behaviour…

and owning its own data and objects

MTC – Main test component
is created automatically

PTC – Parallel test component(s)
created dynamically

Communicating with each other and with the SUT via ports

Defined sets of incoming & outgoing messages, 
and procedure calls & responses

PTC

PTC

PTC

PTC

MTC

m
a
p
p
e
d
 p

o
rt

s

connected 

ports

SUT


