

AUTOSAR conformance testing using TTCN-3

TTCN-3 User Conference 2009

Sophia Antipolis, June 4

Alain Gilberg PSA, AUTOSAR Project Leader)

Overview

- Introduction to AUTOSAR
- Achievements of AUTOSAR
- Conformance testing with TTCN-3

Introduction

- > AUTOSAR, AUTomotive Open System Architecture
 - De-facto standard, jointly developed by automobile manufacturers, suppliers and tool developers
 - More than 150 member companies

"Cooperate on standards, compete on implementation."

- During 6 years the partnership has been
 - Creating the baseline for software architecture of Automotive ECUs,
 - Adding major features and
 - Bringing the standard "On the road"
- The ongoing development of products by the member and core partner companies are providing a unique feedback loop into the development of the standard itself.

Main objective of AUTOSAR: Managing Complexity by Exchangeability and Reuse of Software Components

AUTOSAR has standardized the software architecture of ECUs

- > Hardware- and software will be widely independent of each other.
- Development processes will be simplified. This reduces development time and costs.
- Reuse of software increases at OEM as well as at suppliers. This enhances also quality and efficiency.

AUTOSAR – Core Partners and Members

Status: 29th March 2009

Development Approach: 2004-2008

The AUTOSAR Roll Out Plan (2008 - 2012)

Core Partner	2008	2009	2010	2011	2012
BMW Group 🕚 🥌	■ ≈10 AUTOSAR BSW modules as part of Std Core in vehicles, tool / serial support in place			■ Powertrain-, Chassis-, Safety-, Body- ECUs use AUTOSAR architecture	
BOSCH	 Body Computer with subset of AUTOSAR specs incorporated Instrument Cluster with subset of AUTOSAR specs incorporated 	 ACC ECU using AUTOSAR architecture. Powertrain EDC/ME(D)17 ECUs using AUTOSAR architecture Domain Control Unit using AUTOSAR BSW 	 Chassis ECU using AUTOSAR architecture Body Computer using AUTOSAR architecture 		
Ontinental 🟵		 Body ECU using AUTOSAR architecture Powertrain ECUs using AUTOSAR architecture 	Powertrain- ,Chassis- ECU using AUTOSAR architecture		
DAIMLER		First usage of AUTOSAR modules in vehicles	First AUTOSAR compa- tible ECUs in vehicles	Introduction of AUTOSAR architecture and methodology in vehicles	
Fired		1-2 AUTOSAR conformant ECUs; first use of conformant tools/methodology	 Continuous roll-out of ECUs into vehicle architecture increased use of conformant tools / methodology 		
			First usage of AUTOSAR modules	First use of AUTOSAR architecture ECU	
PSA PEUGEOT CITROËN		Powertrain ECU using AUTOSAR architecture	Body ECU using AUTOSAR architecture		
ΤΟΥΟΤΑ			First usage of AUTOSAR modules		AUTOSAR Architecture ECU
VOLKSWAGEN AG		First AUTOSAR modules in series production		 First complete ECUs in series production 	

AUTOSAR Main Working Topics

Architecture:

Software architecture including a complete basic software stack for ECUs – AUTOSAR Basic Software – as an integration platform for hardware independent software applications.

Methodology:

Description templates and exchange formats to enable a seamless configuration process of the basic software stack and the integration of application software in ECUs. Guidelines how to use this framework.

Application Interfaces:

Specification of interfaces of typical automotive applications from all domains in terms of syntax and semantics, which should serve as a standard for application software.

Layered Architecture

Architecture en couches

System Services Memory Services Watchdog NVRAM Manager Manager MemIf Read() MemIf Write() WdgIf_Trigger() Memory Hardware Abstraction Onboard Device Abstraction Memory Abstraction Interface Watchdog Interface Fee Read() EEPROM Fee Write Abstraction Wdg Trigger Flash EEPROM Emulation External External EEPROM Driver Watchdog Driver Spi ReadIB() Fls Read() Spi WriteIB() Fls Write() Memory Drivers COM Drivers Internal SPIHandlerDriver Flash Driver μC Flash SPI CS SPI CS SPI External External Watchdog EEPROM

Details on the memory stack at basic software module level

AUTOSAR Méthodology (1/2)

Méthodologie AUTOSAR (2/2)

Application Interfaces

AUTOSAR standardizes not all interfaces of a SW-component, only the widely required interfaces.

To ease the re-use of software components across several OEMs, AUTOSAR proceeds on the standardization of the application interfaces agreed among the partners.

Data Type Name	YawRateBase		
Description	Yaw rate measured along vehicle z- axis (i.e. compensated for orientation). Coordinate system according to ISO 8855		
Data Type	S16		
Integer Range	-32768+32767		
Physical Range	-2,8595+2,8594		
Physical Offset	0		
Unit	rad/sec		
Remarks	This data element can also be used to instantiate a redundant sensor interface. Range might have to be extended for future applications (passive safety).		
Data Type Name	RollRateBase		

16

Integrated Master Table as Engineering Tool

Graphical representation / Import to AUTOSAR compliant modeling tool

A validation project was set up to validate the results of AUTOSAR

Major Achievements of Releases 3.0/3.1

Architecture (BSW and RTE):

- High stability of architecture and functionality
- Concepts for wake-up and bus state management incorporated
- On Board Diagnostic introduced in Release 3.1
- → Commercial implementations of BSW and RTE available

Methodology:

Application Interfaces:

- Improved implementation/configuration methodology by new BSW Module Description Template
- Good progress in the consistency of templates starting from the system view down to the ECU configuration
- → Commercial tooling for AUTOSAR available

First set of cross-domain standardization

- First vehicle-wide specification of application interfaces
- Integration procedures available for further interface specifications

Industrially useable

Major cornerstones set

Release 4.0: main focus

Architecture and Basic Software

- Functional safety, error handling harmonization,
- Evolutions of the communication stack
- Architectural extensions
- Conformance tests specifications for basic software modules

Methodology

- Variant handling and calibration
- Timing model
- Improvement of templates

Application interfaces

- Continuous development in the domains of
 - Body, Powertrain, Chassis, Passive Safety, Telematics/Multimedia/HMI

Conformance testing in the AUTOSAR project

The AUTOSAR standard is focussed on

- The use by all partners (OEM, Tier 1s, software vendors) of a common architecture
- The standardization of interfaces for basic software modules, RTE and application interfaces
- A high configurability to cover all the needs and to enable scalability to different vehicle platforms
- The conformance testing has been a target from the very beginning to enable those objectives of transferability and reuse
 - The Workpackage #20 has been set up to build the conformance testing process
 - A specific Workpackage #2.2 is in charge of the development of the conformance tests

Conformance testing objectives

- The conformance of BSW implementations to the AUTOSAR specifications is a basic condition for
 - Interoperability and reuse
 - using AUTOSAR trademark
- They are developed for basic software modules and for the RTE
- Conformances tests will be part of the Release 4.0

Conformance Testing for AUTOSAR products

- Conformance test agencies (CTA) are entitled companies for delivering conformance attestations on AUTOSAR implementations
- Conformance Test Agencies (CTA): produce/perform conformance test suites (CTS) derived from the conformance test specifications
- Different paths are defined for conformance from 3rd party attestation to self declaration

AUTOSAR Implementation Conformance Classes (ICC)

3 Implementation Conformance Classes

- **ICC3**: RTE + all BSW modules separately.
 - Maps full AUTOSAR module granularity
 - superset of all features in AUTOSAR
- ICC2: RTE + BSW bundled into separate clusters.
 - Maps existing solutions and clusters (e.g. Memory-Cluster includes several modules)

ICC1: RTE + BSW in one single cluster:

- Can be used for migrating to AUTOSAR.
- Can be used to embed existing proprietary solutions.
- Offers the highest level of integration.

AUTOSAR Runtime Environment (RTE)									
System Services		Memory Services	Communication Services	I/O Hardware Abstraction	Complex Drivers				
	Onboard Device Abstraction	Memory Hardware Abstraction	Communication Hardware Abstraction						
	Microcontroller Drivers	Memory Drivers	Communication Drivers Can Driver	I/O Drivers					

Application Laver

Microcontroller

Conformance Test Specification process

> Objectives

- CT methodology: How to test which test objects and features?
- CT specification: How to organize the specification process?
- CT verification: How to verify the quality of the tests?

> Scope

- CT Specification on BSW, ICC3 level,
- > Approach
 - Analysis and refinement of design specifications (SWS)
 - Identification and classification of SWS items
 - Design and specification of conformance tests
 - Verification of test specifications

Conformance Test Specification process

- Roles: Test designer, Test implementer, Test verification implementer, Test assessor
 - Phases: Analysis, Design, Implementation, Verification on dev machines and target platforms

Supporting disciplines, e.g.

Requirements management, Configuration management

Conformance Test Methodology

Check test objects for conformance to design specifications (SWS)

- Conformance tests
 - Primarily automatable, dynamic tests
 - Black-box unit tests of valid configurations
 - Functional properties of provided and required operations

Abstract test cases specified in TTCN-3

Implementation Conformance Statement (ICS):

Is used to adapt the test suite to the actual variant of the test object

Conformance Testing Methodology

Test scope

- Interfaces, behavior and configurations
- Functional tests of individual basic software modules

Requirements on tests

- Tests case specifications shall be stringent, accurate and non ambiguous
- Executable test procedures shall be derived automatically from tests specifications

Rationale for choosing TTCN-3 for test specifications

TTCN-3 is used for dynamic tests

- Abstract notation for test specifications and stubs
- Tests procedures can automatically be derived from test specifications
- Test specifications delivered to CTAs by AUTOSAR are non ambiguous
- Test suites developed by CTAs will keep the same behaviour.
- Boundary conditions
 - The tooling available on the market should behave the same wrt the TTCN-3 notation
 - TTCN-3 rules had to be elaborated in order to fit to the tools capabilities

Strategy for development

Target is the AUTOSAR R4.0

- Synchronize the development of SWS and CT specs
 - Anticipate with R3.0 modules
 - Start with modules where less changes are expected
- Improvements of SW specifications due to CT are included

Outcome from the CTSpecs project

Analysis of 70% of the BSW modules

- ~5000 requirements have been already analyzed
- 37% are testable by behavioral tests

Improvement of SW specifications

- Atomic requirements, testable, local to this module
- Some functional bugs have been fixed too

Coverage (relevant for CT)

- Hardware dependent & real time dependent requirements are considered not testable
- Test coverage is depending on the modules
 - Maximum: 100%
 - Average: 84%
 - Minimum: 61%

Test validation

- All the test cases has been validated on a simulated environment
- A feed back loop has been established with pilot CTAs

Conclusion

The AUTOSAR development partnership has brought to reality a unique and worldwide standard,

Conformance test has already made the specifications more robust

Thank you for your attention!

